ФИЗИКА БУДУЩЕГО Мичио Каку читать онлайн стр 4 стр1 стр3 стр 5
Исследователи научились читать книгу жизни, которая включает в себя полный геном человека и обещает чудесные достижения в понимании процесса старения. Но продление жизни без здоровья и энергии может стать не вечным благом, а вечным наказанием, в чем и убедился мифический Тифон на собственном горьком опыте. К концу текущего столетия человек тоже обретет в значительной степени мифическую власть над жизнью и смертью. И власть эта не будет ограничена исцелением больных.Нет, ее можно будет обратить на совершенствование человеческого тела и даже на создание новых форм жизни. Однако достигнуто это будет не молитвами и заклинаниями, а благодаря чудесам биотехнологии. Среди ученых, раскрывающих тайны жизни, можно назвать Роберта Ланцу (Robert Lanza) — человека, который всегда спешит. Ланца принадлежит к биологам нового типа, молодым, энергичным и полным свежих идей. Впереди так много прорывов и озарений, а времени так мало! Ланца работает на острие биотехнологической революции. Как ребенок в кондитерской лавке, он с радостным нетерпением бросается исследовать новые территории, делая по пути открытия в самых разных «горячих» областях. Поколение или два назад биологическая наука выглядела совершенно иначе. Биологи не спеша исследовали каких-нибудь малоизвестных червей или жуков, терпеливо и подробно изучали их анатомию и долго придумывали для них латинские названия. Ланца не таков. Я познакомился с Ланца в радиостудии, где должен был взять у него интервью. Он сразу же произвел на меня сильное впечатление своей молодостью и безмерной изобретательностью. В тот момент он, как обычно, разрывался между несколькими экспериментами. Он рассказал мне, что его деятельность в этой стремительно развивающейся области началась самым необычным образом. Ланца вырос в скромной рабочей семье к югу от Бостона, где мало кто после школы продолжал учебу в колледже. Однако случайно услышанное сообщение о раскрытии тайны ДНК настолько поразило школьника, что судьба его была решена. Роберт решил клонировать у себя в комнате цыпленка. Ошеломленные родители не понимали, чем занимается сын, но мешать не стали. Твердо решив осуществить свой проект, Ланца поехал в Гарвардский университет за советом. Никого там не зная, он спросил у какого-то мужчины, которого принял за швейцара, как пройти туда-то и туда-то. Заинтригованный «швейцар» привел подростка в свой кабинет. Позже Ланца узнал, что «швейцар» на самом деле был старшим сотрудникомнужной ему лаборатории. Он познакомил дерзкого и упрямого школьника с другими учеными, в том числе с исследователями нобелевского масштаба, и это полностью изменило жизнь молодого человека. Ланца сравнивает себя с героем Мэтта Дэймона в фильме «Умница Уилл Хантинг», где неряшливый уличный подросток из рабочего района поражает профессоров MIT своим математическим гением. Сегодня Ланца — старший научный сотрудник фирмы Advanced Cell Technology, на его счету сотни публикаций и изобретений. В 2003 г. он стал героем газетных заголовков. Зоопарк Сан-Диего обратился к ученому с просьбой клонировать бантенга — вид диких быков, которому грозит вымирание, — из туши быка, умершего 25 лет назад. Ланца успешно выделил из замороженных тканей клетки, пригодные к использованию, обработал и отправил готовые оплодотворенные клетки на ферму в штате Юта, где зародыши были подсажены в матку коровы. Через десять месяцев Ланца получил известие о рождении своего последнего творения. Одновременно он мог работать над «инженерией тканей». Со временем на базе этой технологии, возможно, будет создана мастерская по выращиванию человеческих органов, где каждый сможет заказать для себя новые органы для замены изношенных или больных, выращенные из наших собственных клеток. И тут же — работа над клонированием клеток человеческого зародыша. Ланца был членом той исторической команды ученых, которая впервые в мире клонировала человеческий зародыш с целью получения стволовых клеток. Три этапа развития медицины Роберту Ланце удалось оседлать приливную волну открытий, порожденных раскрытием тайн ДНК. Исторически в развитии медицины в человеческом обществе можно выделитьпо крайней мере три крупных этапа. На первом этапе, продолжавшемся десятки тысяч лет, в медицине царили суеверие, колдовство и слухи. Большинство детей умирало при рождении, а ожидаемая продолжительность жизни колебалась от 18 до 20 лет. В этот период были открыты кое-какие полезные травы и химические вещества, такие как аспирин,но научного метода поиска новых лекарств и способов лечения не существовало. К несчастью, любые средства, которые по-настоящему помогали, становились тщательно охраняемыми секретами. Чтобы заработать, «врач» должен был угождать богатым пациентам, а рецепты своих микстур и заклинания хранить в глубокой тайне. В этот период один из основателей знаменитой ныне клиники Мэйо, посещая пациентов, вел личный дневник. Там он откровенно писал, что в его черном врачебном чемоданчике есть всего два действенных средства: пила и морфий. Пилу он использовал для ампутации пораженных органов, а морфий — для обезболивания при ампутации. Эти средства работали безотказно. Все остальное в черном чемоданчике, грустно замечал доктор, — это змеиный жир и шарлатанство. Второй этап развития медицины начался в XIX в., когда появилась микробная теория болезней и сформировались представления о гигиене. Ожидаемая продолжительность жизни в США в 1900 г. составила 49 лет. В Европе на полях сражений Первой мировой войны умирали десятки тысяч солдат, и возникла нужда в настоящей медицинской науке, в проведении реальных экспериментов с воспроизводимыми результатами, которые затем публиковались в медицинских журналах. Европейские короли в ужасе наблюдали, как гибнут их лучшие и умнейшие подданные, и требовали от врачей настоящих результатов, а не пустых фокусов. Теперь врачи, вместо того чтобы угождать богатым покровителям, сражались за признание и славу при помощи статей в солидных рецензируемых журналах. Так была подготовлена платформа для продвижения антибиотиков и вакцин, которыеувеличили ожидаемую продолжительность жизни до 70 лет и более. Третья стадия развития — это молекулярная медицина. Мы сегодня наблюдаем слияние медицины и физики, видим, как медицина проникает вглубь вещества, к атомам, молекулам и генам. Этот исторический переход начался в 1940-е гг., когда австрийский физик Эрвин Шрёдингер, один из основателей квантовой теории, написал востребованную книгу «Что такое жизнь?». Он отверг представления о том, что существует какой-то таинственный дух, или жизненная сила, которая присуща всем живым существам и которая собственно и делает их живыми. Вместо этого, рассуждал ученый, вся жизнь основана на некоем коде, а код этот содержится в молекуле. Обнаружив ее, он предполагал, что разгадает тайну бытия. Физик Фрэнсис Крик (Francis Crick), вдохновленный книгой Шрёдингера, объединил усилия с генетиком Джеймсом Уотсоном, чтобы доказать, что этой сказочной молекулой является молекула ДНК. В 1953 г. было сделано одно из важнейших открытий всех времен — Уотсон и Крик раскрыли структуру ДНК, имеющую форму двойной спирали. Длина одной нитки ДНК в распутанном виде составляет около двух метров. Такая нитка представляет собой последовательность из 3 млрд азотистых оснований, которые обозначаются буквами А, Т, С, G (аденин, тимин, цитозин и гуанин) и несут в себе закодированную информацию. Расшифровав точную последовательность азотистых оснований в цепочке ДНК-молекулы, можно прочесть книгу жизни. Стремительное развитие молекулярной генетики привело в конце концов к возникновению проекта «Геном человека» — важнейшей вехи в истории медицины. Ударная программа секвенирования всех генов человеческого организма обошлась примерно в 3 млрд долларов и включала в себе работу сотен ученых по всему миру. Успешное завершение проекта в 2003 г. ознаменовало начало новой эпохи в науке. Со временем у каждого человека появится личная карта генома на электронном носителе вроде CD-ROM. В этой карте будут записаны все примерно 25 000 генов данного человека, и она станет для каждого своеобразной «инструкцией по применению». Нобелевский лауреат Дэвид Балтимор обобщил все вышесказанное одной фразой: «Сегодняшняя биология — это информационная наука». Ближайшее время (с настоящего момента до 2030 г.) Геномная медицина Движущей силой сегодняшнего взрывного развития медицины являются, в частности, квантовая теория и компьютерная революция. Квантовая теория дала человеку поразительно подробные модели молекулярной структуры — например, структуры белков и молекулы ДНК. Мы знаем, как построить молекулу жизни, атом за атомом. А секвенирование генов, которое прежде было долгой, нудной и дорогой процедурой, теперь полностью автоматизировано и производится роботами. Первоначально секвенирование всех генов в теле одного человека стоило несколько миллионов долларов. Эта процедура была настолько дорогой и длительной, что лишь горстка людей в мире (включая ученых, которые занимались совершенствованием и отладкой этой технологии) могла позволить себе обзавестись собственной геномной картой. Однако всего через несколько лет эта экзотическая технология, по всей видимости, станет доступна каждому. (Прекрасно помню свое выступление на конференции во Франкфурте в конце 1990-х гг., где говорилось о будущем медицины. Я предсказывал, что к 2020 г. личная карта генома будет вполне доступна и каждый желающий сможет обзавестись диском или чипом с полным описанием своих генов. Мое заявление вызвало раздражение одного из участников; он поднялся и сказал, что это несбыточая мечта. Генов в человеческом организме попросту слишком много, и составление персональной геномной карты для любого человекабудет стоить слишком дорого. Проект «Геном человека» обошелся в 3 млрд долларов, и стоимость секвенирования генов каждого отдельного человека никогда не снизитсяслишком сильно. Позже мы с ним еще поговорили на эту тему, и я понял, в чем заключается проблема. Этот человек мыслил линейно. Однако за короткое время закон Мура многократно снизил цены и дал возможность секвенировать ДНК с использованием роботов, компьютеров и автоматических установок. Тот человек просто не понял, какое глубокое значение приобрел в биологической науке закон Мура. Сегодня, оглядываясь назад, я понимаю, что если и ошибся в оценке, то в большую сторону. На самом деле возможность получить личную генную карту появится еще раньше.) К примеру, инженер из Стэнфордского университета Стивен Квейк (Stephen R. Quake) разработал на основе последних Достижений очередную роботизированную систему. Он сумел снизить стоимость полного секвенирования до 50 000 долларов и уверен, что через несколько лет она упадет до 1000 долларов. Ученые предполагают, что падение стоимости секвенирования генов до 1000 долларов может послужить сигналом к началу массового обращения за генными картами, так что эта технология станет доступна значительной части человечества. Может быть, через несколько десятков лет процедура полного секвенирования генов будет стоить меньше 100 долларов, не дороже стандартного анализа крови. (Ключ к последним достижениям в этой области — рационализация процедуры секвенирования. Квейк сравнивает цепочки исследуемой ДНК с аналогичными цепочками, которые были уже прочитаны у других пациентов. Он разбивает геном на кусочки, содержащие по 32 бита информации, затем компьютерная программа сравнивает эти фрагменты с уже прочитанными геномами других людей. Известно, что ДНК всех людей почти идентична, различия составляют в среднем менее 0, 1 %. Это означает, что компьютер может быстро найти среди 32-битных фрагментов соответствующие.) Квейк стал восьмым человеком в мире, чей геном был полностью прочитан. В этом проекте у него был и личный интерес, поскольку он хотел проверить свой геном на признаки сердечно-сосудистых заболеваний. К несчастью, его геном свидетельствует о том, что он действительно унаследовал не самый удачный вариант одного из генов, связанный с сердечным заболеванием. «Чтобы рассматривать собственный геном, нужно обладать крепкими нервами», — пожаловался Квейк. Мне знакомо это жутковатое чувство. Мой геном тоже был частично секвенирован и записан на лазерный диск для передачи канала BBC-TV/Discovery, которую я должен был вести. Врач взял у меня из руки немного крови и отправил ее в лабораторию Университета Вандербильта; через две недели оттуда почтой прислали CD-ROM, где были записаны тысячи моих генов. Даже держать этот диск в руках было как-то странно — ведь на нем была записана часть «чертежей», по которым построено мое тело. В принципе, на базе информации с этого диска можно было бы создать мою точную копию. Надо сказать, что любопытство мое тоже было затронуто — ведь на этом диске были записаны многие тайны моего тела. К примеру, я получил возможность проверить, есть ли у меня один конкретный ген, который увеличивает вероятность болезни Альцгеймера. Это меня всегда беспокоило, поскольку моя мама умерла именно от этой болезни. (К счастью, у меня этого гена нет.) Кроме того, четыре моих гена были сопоставлены с соответствующими генами тысяч других людей по всему миру, у которых также были взяты образцы для анализа. Затем на карте земного шара обозначили места проживания всех тех людей, которые обладают точно такими же, как я, копиями этих четырех генов. Точки на карте образовали длинный след, начинающийся у Тибета и затем протянувшийся через весь Китай в Японию. Я был поражен. Оказалось, что точки на карте показывают след древних миграций предков моей матери, протянувшийся в прошлое на тысячи лет. Мои предки не оставили записей о своих перемещениях в эти древние времена, но карта их передвижений, как ни странно, оказалась прочно вписана в мою кровь и ДНК. (Можно проследить и происхождение отца. Если митохондриальные гены передаются в неизменном виде от матери к дочери, то Y-хромосома, наоборот, передается от отца к сыну. Так что, анализируя эти гены, можно проследить за предками человека по материнской и отцовской линии.) Мне представляется, что в недалеком будущем многие люди испытают такое же странное чувство, как и я, взяв в руки диск с «чертежами» своего тела и прочитав самые сокровенные его тайны, включая скрытые в геноме опасные болезни и древние миграционные маршруты предков. Но для ученых все это — первые шаги новой области науки, получившей название биоинформатики. Ее основа — сканирование и анализ геномов тысяч живых организмов при помощи компьютеров. К примеру, если ввести в компьютер данные о геноме нескольких сотен человек, страдающих определенной болезнью, может быть, получится вычислить точное расположение поврежденного участка ДНК. В настоящее время многие мощные компьютеры в мире задействованы именно в биоинформационных исследованиях и заняты анализом миллионов генов, содержащихся в растениях и животных, а также поиском среди них определенных ключевых генов. При помощи биоинформатики можно было бы, к примеру, внести свежую струю в детективные телешоу, такие как «C.S.J.: место преступления». По крошечным кусочкам содержащих ДНК веществ (к примеру, волосяным луковицам, слюне или крови) можно было бы определять не только цвет волос, глаз, этническую принадлежность, рост и медицинскую историю конкретного человека, но, возможно, и его лицо. Сегодня полицейские художники могут воссоздать приблизительный скульптурный портрет жертвы преступления по черепу. Не исключено, что в будущем компьютер сможет реконструировать черты лица человека по каплям его крови или частицам перхоти. (Тот факт, что однояйцевые близнецы очень похожи внешне, означает, что черты лица человека в значительной степени определяются генетическими, а не внешними факторами.) Визит к врачу Как мы уже говорили, визит к врачу в будущем радикально поменяется. Общаясь с доктором посредством настенного интернет-экрана, вы, вероятно, будете иметь дело с компьютерной программой. В вашей ванной комнате будет установлено больше датчиков, чем в современной больнице, и они смогут без труда и шума обнаружить раковые клетки за несколько лет до возникновения опухоли. К примеру, около половины всех случаев обычного рака связаны с мутацией гена р53, которую можно без труда обнаружить при помощи таких датчиков. При появлении первых признаков рака вам будет сделана инъекция специальных наночастиц, которые попадут в кровь и подобно умным бомбам, доставят противораковые лекарства непосредственно к месту расположения раковых клеток. Сегодняшняя химиотерапия покажется нам такой же примитивной, какими сейчас кажутся медицинские пиявки прошлого и позапрошлого веков. (Подробнее о нанотехнологии, ДНК-чипах, наночастицах и наноботах мы поговорим в следующей главе.) [Картинка: i_008.jpg] Если «врач» на вашем настенном экране не сможет вылечить болезнь или травму какого-то органа, вы сможете вырастить для себя новый орган. На сегодняшний день тольков США в очереди на пересадку различных органов «стоит» 91 000 человек. Все они ждут одного — чтобы нашелся донорский орган на замену. Каждый день 18 человек из этой очереди умирает, так и не дождавшись спасения. В будущем, если виртуальный врач обнаружит какое-то нарушение в одном из ваших органов, он сможет заказать новый орган, который будет выращен на специальной фабрике непосредственно из ваших собственных клеток. Одной из самых «горячих» областей медицины на сегодня является так называемая «тканевая инженерия», цель которой — сделать возможной «мастерскую» по изготовлению запасных частей для человеческого тела. Уже сейчас ученые умеют выращивать в лаборатории кожу, кровь, кровеносные сосуды, сердечные клапаны, хрящи, кости, носы и уши из собственных клеток человека. Первыйсерьезный орган — мочевой пузырь — был выращен в 2007-м, а первая трахея — в 2009 г. До сих пор получается выращивать только относительно простые органы, содержащие лишь несколько типов тканей и почти не структурированные. Можно предположить, что лет через пять удастся вырастить первую печень и поджелудочную железу, что будет иметь громадное значение для всей системы здравоохранения. Нобелевский лауреат Уолтер Гилберт в разговоре со мной сказал, что предвидит в недалеком будущем — всего через несколько десятилетий — такое время, когда можно будет вырастить из клеток практически любой орган. Чтобы вырастить новый орган для конкретного человека методом тканевой инженерии, сначала необходимо получить некоторое количество клеток этого человека. Затем эти клетки вводят в пластиковую матрицу, которая по внешнему виду напоминает губку в форме нужного органа. Матрица изготавливается из биорассасывающегося полимера гликолевой кислоты. Кроме того, клетки обрабатывают определенными факторами роста, что стимулирует их развитие и рост внутри матрицы. Со временем матрица рассасывается, оставляя вместо себя желаемый орган. Мне довелось побывать в лаборатории Энтони Аталы (Anthony Atala) в Университете Уэйк-Форест в Северной Каролине и лично стать свидетелем применения этой технологии. Проходя по лаборатории Аталы, я видел бутыли с живыми человеческими органами. Я видел кровеносные сосуды и мочевые пузыри; я видел сердечные клапаны, которые непрерывно открывались и закрывались, потому что через них прокачивали различные жидкости. Вид живых органов, функционирующих в сосудах, вызывал ассоциации с лабораторией доктора Франкенштейна. Однако были и принципиальные различия. Тогда, в XIX в., медики не подозревали о существовании механизмов отторжения чужеродных тканей, которые так затрудняют пересадку органов. Кроме того, врачи не умели останавливать инфицирование, которое было неизбежным следствием любой хирургической операции. Поэтому Атала, вместо того чтобы создавать чудовищ, разрабатывает новую жизнесберегающую медицинскую технологию, которая когда-нибудь, возможно, полностью изменит сущность медицины. Одна из целей его лаборатории — выращивание человеческой печени — может быть реализована в течение пяти лет. Вообще говоря, печень не так уж сложна и содержит в себе ткани лишь нескольких типов. Выращенная в лаборатории печень могла бы спасти тысячи жизней, в первую очередь тех, кто остро нуждается в пересадке этого органа. Она могла бы спасать и алкоголиков, страдающих циррозом. (К несчастью, эта технология может также побудить людей прочнее держаться за свои дурные привычки, ведь они будут знать, что смогут получить новый орган взамен поврежденного.) Если некоторые органы человеческого тела, такие как трахея и мочевой пузырь, выращивать уже научились, то что мешает ученым вырастить все без исключения органы? Проблема, с одной стороны, заключается в выращивании крохотных капилляров, которые обеспечивают кровью клетки тканей, ведь кровь должна поступать к каждой клетке тела. Кроме того, существует проблема выращивания сложных структур. К примеру, почка, очищающая нашу кровь от токсинов, состоит из миллионов мельчайших фильтров, и матрицу для этих фильтров создать будет очень нелегко. Но наибольшие сложности при выращивании представляет другой человеческий орган — мозг. Хотя воссоздание или наращивание мозга — дело не ближайших десятилетий, не исключено, что, если ввести молодые клетки непосредственно в мозг, он подхватит их и включит в свою нейронную сеть. Такая инъекция, конечно, будет случайной, поэтому пациенту придется многие базовые функции осваивать заново. Но поскольку мозг «пластичен» — т. е. он постоянно, с каждой новой задачей, обновляет свою структуру и связи, — не исключено, что он действительно сможет безболезненно интегрировать новые нейроны и добиться, чтобы они правильно срабатывали. Стволовые клетки Следующий шаг — применение технологии стволовых клеток. На данный момент все человеческие органы выращиваются не из стволовых клеток, а из обычных, только специальным образом обработанных, чтобы они могли размножаться внутри матрицы. В ближайшем будущем, вероятно, можно будет непосредственно использовать здесь технологию стволовых клеток. Стволовые клетки — это «мать всех клеток», они способны менять свою структуру и превращаться в клетки любого типа. Каждая клетка в нашем теле несет в себе полный генетический код, необходимый для строительства тела целиком. Однако по мере созревания клетки специализируются, так что многие гены в них становятся неактивными, как бы выключаются. В клетке кожи, к примеру, имеются все гены, необходимые для превращения в кровь, но они выключены; ненужные гены отключились в тот момент, когда зародышевая клетка стала взрослой клеткой кожи. Зародышевые стволовые клетки всю свою жизнь сохраняют способность превращения в клетки любого типа. Ученые ценят их выше, но одновременно вопрос работы с ними куда более противоречив, поскольку для извлечения таких клеток зародышем приходится жертвовать, а здесь, естественно, возникают этические вопросы. (Однако Ланца и его коллеги нашли новые способы, при помощи которых можно взять взрослые стволовые клетки, уже превратившиеся в клетки какого-то конкретного типа, и превратить их снова в зародышевые стволовые клетки.) Потенциально при помощи стволовых клеток можно излечивать множество болезней, таких как диабет, сердечные заболевания, болезни Альцгеймера и Паркинсона и даже рак. Более того, трудно придумать болезнь, в лечении которой стволовые клетки не могли бы сыграть существенную роль. В частности, активные исследования в настоящее время идут в области лечения травм позвоночника и спинного мозга, которые когда-то считались совершенно неизлечимыми. В 1995 г., когда актер Кристофер Рив (Christopher Reeve) серьезно повредил позвоночник и остался парализованным, методов лечения таких травм не существовало. Однако в опытах на животных уже сегодня достигнуты огромные успехи в восстановлении спинного мозга при помощи стволовых клеток. К примеру, Стивен Дэвис (Stephen Davies) из Университета Колорадо добился впечатляющих успехов в лечении травм спинного мозга у крыс. Он говорит: «Я провел несколько экспериментов, в которых мы пересаживали взрослые нейроны непосредственно во взрослую центральную нервную систему. Почти как у Франкенштейна. К нашему великому удивлению, мы обнаружили, что взрослые нейроны всего за неделю способны протянуть новые нервные волокна от одного конца мозга до другого». Ранее в лечении спинномозговых травм считалось, что любая попытка восстановления нервов вызовет сильнейшую боль и страдание. Однако Дэвис обнаружил, что ключевой тип нервных клеток, известный как астроцит, существует в двух вариантах, и их применение вызывает разные результаты. Дэвис говорит: «Если использовать при восстановлении поврежденного спинного мозга правильные астроциты, мы получим результат без боли, тогда как клетки другого типа дадут боль без результата». Более того, он уверен, что та же техника применения стволовых клеток, которую он разрабатывает, будет полезна в лечении инсульта, а также болезней Альцгеймера и Паркинсона. Поскольку из зародышевой стволовой клетки можно получить практически любую клетку тела, возможности здесь открываются безграничные. Однако Дорис Тейлор (Doris Taylor),директор Центра сердечно-сосудистых заболеваний при Университете Миннесоты, предостерегает от излишнего оптимизма и говорит, что работы впереди еще очень много. «Зародышевые стволовые клетки могут нести и добро, и зло, и уродство. Если они хорошие, их можно выращивать в больших количествах в лаборатории и использовать для создания тканей, органов или частей тела. Если они плохие, они не могут вовремя прекратить рост и образуют опухоли. Что касается уродства, то мы понимаем далеко не все и не можем контролировать результат, и мы не готовы использовать их без дополнительных лабораторных исследований», — замечает она. Действительно, это одна из главных проблем, стоящих перед исследователями стволовых клеток: эти клетки, без внешних химических сигналов, иногда продолжают бешено размножаться и в конце концов перерождаются в раковые. Ученые уже понимают, что тонкие химические сигналы, курсирующие между клетками и сообщающие им, когда надо расти и когда пора прекратить рост, не менее важны, чем сами клетки. Тем не менее можно говорить о медленном, но стабильном прогрессе в этой области, особенно в опытах на животных. В 2008 г. имя Тейлор попало в заголовки газет: ее команда впервые в истории вырастила работающее мышиное сердце почти с нуля. Эксперимент начался с того, что ученые взяли мышиное сердце и растворили все клетки внутри его, оставив только каркас, белковую матрицу в форме сердца. Затем они поместили в эту матрицу смесь сердечных стволовых клеток. После этого осталось только наблюдать, как стволовые клетки размножаются внутри каркаса. Ученым и раньше удавалось вырастить отдельные сердечные клетки в чашке Петри, но впервые удалось вырастить в лаборатории живое бьющееся сердце. Выращивание сердца стало для Тейлор и значимым личным событием. Она сказала: «Это великолепно. Можно увидеть все сосудистое дерево, от артерий до крошечных вен, снабжающих кровью все без исключения клетки сердца». Одно из подразделений правительства США остро заинтересовано в скорейшем развитии тканевой инженерии, и это подразделение — Вооруженные силы США. В прежних войнах боевые потери армии были ужасающими, списочный состав целых полков и батальонов уменьшался разом на порядок, многие умирали от ран. Теперь медицинские эвакоотряды быстрого реагирования перевозят раненых из Ирака и Афганистана в Европу или Соединенные Штаты, где солдаты получают высококвалифицированную медицинскую помощь. Коэффициент выживания среди солдат резко вырос — и одновременно с этим резко выросло число солдат, потерявших руки или ноги. Вследствие этого приоритетной задачей армии США стал поиск способа выращивания частей тела на замену утраченным. В Институте регенеративной медицины Вооруженных сил было сделано серьезное открытие, связанное с использованием совершенно нового метода выращивания органов. Ученые давно знали, что саламандры обладают замечательными способностями к регенерации и могут отращивать новые конечности взамен Утраченных. Конечности отрастают заново, потому что стволовые клетки саламандры получают соответствующую команду. Исследованием одной из плодотворных теорий на сей счет занимается Стивен Бадилак (Stephen Badylak) из Университета Питтсбурга, которому удался эксперимент по отращиванию Утраченных кончиков пальцев. Его команда разработала «эльфийский порошок», обладающий чудесной силой стимулировать рост тканей. Порошок этот изготавливается не из клеток, а из внеклеточной матрицы, существующей между клетками. Эта матрица играет решающую роль, поскольку в ней содержатся сигналы, которые доносят до стволовых клеток команду расти определенным образом. Если этим порошком посыпать отрезанный кончик пальца, он простимулирует восстановление не только самого пальца, но и ногтя, и в результате получится почти идеальная копия первоначального пальца. Таким образом, Бадилаку и его команде удалось нарастить на пальце до трети дюйма мягких тканей и ногтя. Следующая цель — продолжать этот процесс и посмотреть, отрастет ли под действием порошка целая человеческая конечность, как у саламандры. Клонирование Если можно выращивать отдельные органы человеческого тела, то нельзя ли вырастить целого человека — создать точную генетическую копию, клона? Ответ: да, в принципе можно, но пока этого никто не делал, несмотря на многочисленные сообщения. Клоны — любимая тема голливудских фильмов, но там, как правило, о науке особенно не беспокоятся. В фильме «Шестой день» герой Арнольда Шварценеггера сражается с плохими парнями, которые каким-то образом овладели искусством клонирования человека. Что еще важнее, они придумали способ копировать личность вместе с памятью и вставлять все это в готового клона. Когда Шварценеггеру удается устранить одного плохого парня, на его место тут же встает другой, с той же личностью и теми же воспоминаниями. Ситуация еще больше усложняется, когда герой узнает, что без его ведома был создан его собственный клон. (На самом деле при клонировании животного память не клонируется.) Тема клонирования попала в заголовки мировых газет в 1997 г., когда Ян Вилмут из Рослинского института при Университете Эдинбурга сумел клонировать овечку Долли. Онвзял клетку взрослой овцы, извлек из нее ядро с содержащейся в нем ДНК и поместил это ядро в пустую яйцеклетку. Вилмут добился главного: создал генетическую копию оригинала. Я однажды спросил, думал ли он о том, какая медийная буря поднимется вокруг его исторического достижения. Он ответил: нет. Он ясно представлял медицинское значение своей работы, но серьезно недооценивал интерес публики к подобным событиям. Вскоре научные группы по всему миру начали повторять эксперимент Вилмута. Было клонировано немало самых разных животных, включая мышей, коз, кошек, свиней, собак, лошадей и крупный рогатый скот. Я ездил со съемочной группой ВВС на ферму Рона Маркесса (Ron Marquess) под Далласом (Техас). Там находится одно из крупнейших в стране хозяйств, где разводят клонированный скот. На ранчо Маркеса я с изумлением увидел клонированных животных первого, второго и даже третьего поколения — клонов клонов клонов. Маркес рассказал, что для обозначения разных поколений клонированного скота им придется придумывать новый словарь. Одна группа животных привлекла мое внимание. В ней было около восьми совершенно одинаковых животных. Они ходили, бегали, ели и спали совершенно одинаково. Конечно, телята не знали, что являются клонами друг друга, но инстинктивно собирались вместе и во всем подражали друг другу. Маркес рассказал мне, что клонирование скота — потенциально очень выгодный бизнес. Если у вас есть бык с великолепными физическими характеристиками, он может принести вам неплохой доход как производитель. Но когда бык умирает, его генетическая линия пропадает вместе с ним, если только вы не озаботились заранее собрать и заморозить сперму. Клонирование позволяет сохранять генетическую линию призового быка вечно. Хотя клонирование, очевидно, найдет коммерческое применение в разведении самых разных животных, с применением его к человеку все гораздо сложнее. Уже прозвучало несколько сенсационных сообщений об успешном клонировании человека, но, по всей видимости, все они пока безосновательны. До сих пор никому не удалось клонировать даже примата, не говоря уж о человеке. Даже клонирование животных пока представляет собой сложную операцию, и на каждый зародыш, которому удается достичь зрелости, приходятся сотни дефектных. Но даже если считать, что клонирование человека станет возможным, против него имеются серьезные социальные возражения. Во-первых, многие религии восстанут против клонирования человека, точно так же как в 1978 г., когда Луиза Браун стала первым в истории ребенком, зачатым в пробирке, католическая церковь восстала против внематочного оплодотворения. Это означает, что будут приняты законы, запрещающие клонирование человека или по крайней мере жестко его регулирующие. Во-вторых, коммерческий спрос на клонирование человека будет очень невелик. Как максимум, даже если эта операция станет законной, клоны составят совсем небольшую долю человечества. В конце концов, среди нас уже есть клоны в форме однояйцевых близнецов (и тройняшек), так что новизна этого явления будет весьма относительной и нездоровый интерес к немусо временем спадет. Первоначальный спрос на детей из пробирки был огромен — ведь бесплодных пар очень много. Но кто захочет клонировать человека? Может быть, родители, оплакивающие смерть ребенка. Или, еще вероятнее, пожилой богач на смертном одре, не имеющий наследников — по крайней мере таких наследников, которым он захочет что-то оставить, — и мечтающий завещать все свои деньги возрожденному себе самому, чтобы начать все заново. Так что в будущем, несмотря на возможные запрещающие законы, человеческие клоны, вероятно, появятся. Однако они составят лишь ничтожную долю человечества, и социальные последствия клонирования будут невелики. Генная терапия Фрэнсис Коллинз (Francis Collins), директор Национального института здравоохранения и человек, руководивший историческим правительственным проектом «Геном человека», рассказал мне, что «у каждого из нас имеется с полдюжины искореженных генов». В далеком прошлом человеку приходилось безмолвно страдать от этих часто смертельных генетических дефектов. В будущем, сказал он, мы сможем устранять многие из них при помощи генной терапии. Генетические заболевания преследовали человечество с незапамятных времен, а в ключевые моменты истории, возможно, даже оказывали влияние на ее ход. Так, близкородственные браки среди царствующих фамилий Европы привели к тому, что наследственными генетическими болезнями страдали целые поколения знати. К примеру, Георг III Английский, скорее всего, страдал острой перемежающейся порфирией, которая вызывает временные приступы безумия. Некоторые историки считают, что это осложнило его отношения с североамериканскими колониями, подтолкнув их к объявлению в 1776 г. независимости от Англии. Королева Виктория была носительницей гена гемофилии, вызывающего неконтролируемые кровотечения. У нее было девять детей, многие из которых вступили в брак с представителями других правящих домов Европы, таким образом эта «королевская болезнь» распространилась по всему континенту. В России правнук королевы Виктории Алексей, сын царя Николая II, страдал от гемофилии, которую, согласно легенде, умел временно облегчать загадочный Распутин. Этот «безумный монах» получил достаточно власти, чтобы парализовать русскую аристократию и задержать нужные стране реформы; как предполагают некоторые ученые, большевистская революция 1917 г. — отчасти его вина. Однако в будущем генная терапия сможет излечить многие из 5000 известных генетических заболеваний, такие какфиброзно-кистозная дегенерация (поражающая уроженцев Северной Европы), болезнь Тея-Сакса (поражающая восточноевропейских евреев) или серповидно-клеточная анемия (которой страдают афроамериканцы). Уже в ближайшем будущем можно будет излечивать многие генетические болезни из тех, что вызываются мутацией одного гена. Генная терапия бывает двух типов: соматическая и генеративная. Соматическая генотерапия предусматривает исправление поврежденных генов у одного конкретного человека. Со смертью пациента терапевтический эффект заканчивается. Более противоречива генотерапия второго типа — генеративная, где исправляются поврежденные гены, в том числе и половых клеток, так чтобы исправленный ген мог быть передан следующему поколению и сохранился надолго, почти навсегда. Лечение генетического заболевания следует по долгому, но хорошо отработанному пути. Сначала необходимо найти людей, ставших жертвами определенного генетического заболевания, и тщательно проследить их родословные на много поколений назад. Анализируя гены пациентов, надо попытаться определить точное положение гена, который мог оказаться поврежденным. Затем следует взять здоровую версию этого же гена и вживить ее в «вектор» (обычно это безвредный вирус), после чего ввести его пациенту. Вирус быстро вставляет «правильный ген» в клетки пациента и — потенциально — излечивает болезнь. К 2001 г. начались или планировались испытания более чем 500 вариантов генной терапии. Но дело продвигается медленно, а испытания дают противоречивые результаты. Одна проблема состоит в том, что тело часто путает безвредный вирус, содержащий «правильный ген», с вирусом опасным и начинает атаку. При этом возникают побочные эффекты, которые могут свести на нет действие правильного гена. Другая проблема заключается в том, что далеко не всем вирусам удается корректно встроить нужный ген в клетки человеческого тела, и клетки не могут производить нужный белок в необходимом количестве. Несмотря на эти трудности, французские ученые объявили в 2000 г., что им удалось вылечить детей с тяжелым комбинированным иммунодефицитным синдромом (ТКИД) — детей,родившихся с неработоспособной иммунной системой. Некоторые из таких детей, подобно «Дэвиду, мальчику из пузыря», вынуждены всю жизнь провести в стерильном пластиковом пузыре. Любая инфекция может оказаться для них фатальной. Генетический анализ пациентов, подвергнутых генотерапии, показал, что в их иммунных клетках действительно появился новый ген, как и планировалось, в результате чего иммунная система детей заработала. Но были и неудачи. В 1999 г. в Университете Пенсильвании пациент умер при испытании одного из методов генотерапии, и медицинскому сообществу пришлось переосмыслить свое отношение к подобным экспериментам. Эта смерть стала первой среди 1100 пациентов, участвующих в испытаниях генной терапии этого типа. А к 2007 г. выяснилось, что у четырех из десяти пациентов, вылеченных от одной конкретной формы ТКИД, развился серьезный побочный эффект — лейкемия. Теперь исследования в области генной терапии ТКИД сосредоточены на том, как вылечить болезнь и не активировать при этом случайно ген, способный вызвать рак. На сегодняшний день все семнадцать пациентов, страдавших другой разновидностью ТКИД и вылеченных средствами генной терапии, здоровы и не страдают ни ТКИД, ни раком. Это один из немногих бесспорно успешных результатов в этой области. Рак и сам по себе является одной из главных мишеней генной терапии. Почти половина всех случаев обычного рака связана с повреждением одного гена, р53. Это длинный и сложный ген, что повышает вероятность его повреждения под воздействием окружающей среды или химических факторов. Проводится множество экспериментов, цель которых— ввести пациентам здоровый ген р53. К примеру, известно, что табачный дым вызывает характерные мутации в трех хорошо известных зонах этого гена. Таким образом, если мы научимся заменять поврежденный ген здоровым, то однажды мы, скорее всего, сможем излечивать определенные формы рака легких. Прогресс в области генной терапии рака идет медленно, но верно. В 2006 г. ученые Национального института здравоохранения в Мэриленде сумели вылечить метастатическую меланому— форму рака кожи — при помощи генетически измененных Т-лимфоцитов (Т-киллеров), нацеленных специально на раковые клетки. Это первое исследование, доказывающее, что генную терапию можно использовать против некоторых форм рака. А в 2007 г. врачи Юниверсити-колледжа и глазной больницы Мурфилдс в Лондоне смогли посредством генной терапии вылечить одну из форм наследственного заболевания сетчатки (вызываемого мутациями гена RPE65). Тем временем некоторые супружеские пары не ждут появления методов генной терапии на рынке, а берут свою судьбу и свое генетическое наследие в собственные руки. При оплодотворении в пробирке пара может получить сразу несколько оплодотворенных зародышей. После этого каждый из зародышей можно проверить на конкретное генетическое заболевание, а затем выбрать и подсадить матери тот из них, который достоверно от него свободен. Таким образом, даже не используя дорогостоящих технологий и методов генной терапии, можно постепенно избавиться от значительного числа генетических заболеваний. Это уже делают некоторые ортодоксальные евреи в Бруклине, среди которых очень высок риск болезни Тея-Сакса. Но можно сказать почти наверняка, что одна болезнь — рак — останется смертельно опасной на протяжении всего XXI в. Сосуществование с раком Еще в 1971 г. президент Ричард Никсон под фанфары, с большим шумом в прессе, торжественно объявил раку войну. Он считал, что, если выделить на исследования достаточно денег, метод лечения быстро отыщется. Однако сорок лет (и 200 млрд долларов) спустя рак продолжает оставаться в США второй ведущей причиной смертности; именно это заболевание является причиной четверти всех смертей. Смертность от рака за 55 лет, с 1950 по 2005 г., снизилась (с поправкой на возраст и другие факторы) всего лишь на 5 %. Ожидается, что только в этом году рак унесет жизни 562 000 американцев — по полторы тысячи человек в день. По некоторым типам рака смертность снизилась, по другим упрямо держится на прежнем уровне. А методы лечения рака, при которых организм человека травят, кромсают и жгут, заставляют несчастных пациентов сомневаться в том, что в конечном итоге хуже — болезнь или ее лечение. Задним числом мы, конечно, можем сказать, что именно было сделано неверно. Тогда, в 1971 г., до революции в генной инженерии, причина рака оставалась совершенной загадкой. Теперь ученые понимают, что рак — это в первую очередь болезнь генов. Что бы ее ни вызывало — вирус, химические вещества, излучение или просто случайность, — в основе рака лежат мутации четырех или более наших генов, при которых нормальная клетка «разучивается умирать». Клетка теряет контроль над собственным воспроизведением и начинает беспредельно размножаться, со временем убивая пациента. Тот факт, что для запуска раковых процессов требуется последовательность из четырех или более дефектных генов, вероятно, объясняет, почему эта болезнь нередко убивает человека через несколько десятилетий после события, послужившего причиной ее возникновения. К примеру, человек может, будучи Ребенком, сильно обгореть на солнце. Через много лет на этом самом месте у него может развиться рак кожи. Это означает, что За прошедшее время в клетке возникли дополнительные мутации, и их стало достаточно много, чтобы переключить клетку в раковый режим. Существует по крайней мере два основных типа генов, имеющих отношение к раку, — это онкогены и гены — супрессоры опухолей. Онкоген действует как педаль газа в автомобиле, застрявшая в нижнем положении; машина при этом несется на полной скорости. Онкоген позволяет клетке размножаться без всяких ограничений. Ген-супрессор в нормальных условиях действует как тормоз в автомобиле; если он поврежден, клетка становится похожа на машину без тормозов. Проект «Геном рака» нацелен на выявление последовательностей генов, критичных для разных видов рака. Если учесть, что каждый вид заболевания требует полного секвенирования человеческого генома, получится, что проект «Геном рака» в сотни раз амбициознее, чем первоначальный проект «Геном человека». Кое-какие первые результаты этого долгожданного проекта, относящиеся к раку кожи и легких, были опубликованы в 2009 г. Результаты поразительны. Майк Страттон (Mike Stratton) из Института Сенгера сказал: «То, что мы наблюдаем сегодня, полностью изменит наши представления о раке. Мы никогда не видели рак в таком обнаженном виде». В клетках легочной раковой опухоли было обнаружено поразительное количество — 23 000 — отдельных мутаций, а в раковой клетке меланомы — 33 000 мутаций. Это означает, что у среднего курильщика возникает одна мутация на каждые пятнадцать выкуренных сигарет. (Рак легких убивает ежегодно миллион человек по всему миру, в основном курильщиков.) Цель проекта — провести генетический анализ всех типов рака, которых насчитывается больше 100. В теле человека множество типов тканей, любая из которых может обернуться раковой; более того, на каждый тип ткани приходится множество типов рака; при этом каждый тип рака — это десятки тысяч мутаций. Поскольку речь в каждом случае идет о десятках тысяч мутаций, ученым понадобится не одно десятилетие, чтобы определить в точности, какие из них вызывают сбой в клеточном механизме. Скорее всего, будут разработаны методы лечения отдельных видов рака, но не будет одного общего подхода к лечению рака в целом, — ведь и сам рак представляет собой совокупность множества разных заболеваний. На рынке будут появляться новые лекарства и методы лечения, разработанные для поражения молекулярных и генетических корней рака. Среди самых многообещающих методов: •антиангиогенез, или перекрытие кровоснабжения опухоли, в результате которого ее рост прекращается; •наночастицы, напоминающие «умные бомбы» и направленные непосредственно на раковые клетки; •генная терапия, особенно в отношении гена р53; •новые лекарственные препараты, нацеленные на раковые клетки; •новые вакцины против вирусов, способных вызывать рак, таких как вирус папилломы человека (HPV). К несчастью, нам вряд ли удастся отыскать волшебную пилюлю от рака. Более вероятно, что нам придется проходить путь к лечению этого заболевания постепенно, шаг за шагом. Скорее всего, серьезное снижение смертности произойдет тогда, когда вся обстановка вокруг нас будет насыщена чипами, постоянно ведущими наблюдение и выявляющими раковые клетки задолго до того, как образуется настоящая опухоль. Как отмечает нобелевский лауреат Дэвид Балтимор, «рак — это армия клеток, которые сражаются с любыми нашими способами лечения так, что, я уверен, мы никогда не сможем выйти из боя». Середина века (2030–2070 гг.) Генная терапия Несмотря на недостатки и неудачи генотерапии, исследователи Мерены, что в ближайшие десятилетия эта область медицины будет стабильно развиваться. Многие считают,что к середине века генотерапия станет обычным методом лечения целого ряда генетических заболеваний. Успехи, уже достигнутые учеными в экспериментах на животных,со временем распространятся и на человека. До сих пор генная терапия была направлена лишь на болезни, вызываемые мутацией одного-единственного гена. Именно эти заболевания будут излечены первыми. Однако несекрет, что многие заболевания вызываются мутациями нескольких генов и, кроме того, действием определенных внешних факторов. Подобные болезни лечить намного труднее, но к ним относятся такие серьезные и распространенные заболевания, как диабет, шизофрения, болезни Альцгеймера и Паркинсона, а также многие сердечные заболевания. Все они имеют генетическую основу, но связаны с мутациями не одного, а нескольких генов. К примеру, бывает, что один из однояйцевых близнецов страдает шизофренией, а другой нормален. Разные ученые уже не раз объявляли, что путем исследования генетической истории нескольких семей им удалось выделить гены, связанные с шизофренией. Однако результаты таких работ, как правило, невозможно проверить при помощи независимых исследований. Так что либо заявленные результаты в большинстве своем ошибочны, либо шизофрения связана со множеством разных генов. К тому же здесь, судя по всему, задействованы еще и внешние факторы. К середине века генная терапия должна стать общепринятым методом лечения, по крайней мере для болезней, вызываемых повреждением одного гена. Но не исключено, что пациентам мало будет просто исправить дефектные гены. Вполне возможно, что они захотят их улучшить. Дети по спецпроекту К середине века ученые перейдут от простой починки сломанных генов к их усилению и улучшению. Человеку испокон веков хотелось обрести сверхчеловеческие способности; в этом несложно убедиться, обратившись к греческим и римским мифам, а также заглянув в обычные наши сны. Великий герой Геракл, один из популярнейших греко-римских полубогов, получил свою невероятную мощь не в результате упорных занятий и правильного питания, а просто как сын божества — т. е. от божественных генов. Его мать, смертная красавица Алкмена, однажды удостоилась внимания Зевса, который вступил с ней в связьпод видом ее собственного мужа. Когда она забеременела, Зевс объявил, что ребенок станет великим воином. Однако супруга Зевса Гера приревновала его к смертной и тайно решила умертвить ребенка, задержав его рождение. Алкмена чуть не умерла в муках во время долгих родов, но в последнюю минуту заговор Геры был раскрыт и у Алкмены родился необычайно крупный младенец. Наполовину человек, наполовину бог, Геракл унаследовал божественную силу отца и совершил множество героических, легендарных подвигов. В будущем мы, может быть, и не научимся создавать божественные гены, но наверняка сможем создавать гены, которые обеспечат человеку сверхчеловеческие способности.Однако, подобно рождению Геракла, до появления такой технологии ученым предстоит преодолеть множество трудностей. Тем не менее к середине века «дети по спецпроекту» могут стать реальностью. Как сказал гарвардский биолог Э. Уилсон, «Homo sapiens, первый истинно свободный вид, вскоре оставит позади естественный отбор — силу, создавшую нас… Скоро мы должны будем заглянуть глубоко в себя и решить, какими мы хотим стать». Уже сегодня ученые понемногу начинают разбираться в генах, отвечающих за базовые функции организма. К примеру, в 1999 г. был выделен ген «умной мыши», заметно улучшающий память и сообразительность мышей. Мыши, обладающие таким геном, лучше проходят лабиринты и лучше запоминают. Ученые Принстонского университета, в частности Джозеф Цянь (Joseph Tsien), создали линию генетически измененных мышей, у которых есть дополнительный ген под названием NR2B, помогающий запустить производство нейротрансмиттера М-метил-Б-аспартата (NMDA) в передней части мозга мыши. Создатели умных мышей окрестили их Дуги-мышами (в честьгероя юмористического телесериала маленького доктора Дуги Хаузера). Умные мыши обгоняют обычных мышей по многим тестам. В одном эксперименте мышь помещают в емкость с непрозрачной водой, где она должна отыскать скрытую платформу, на которой можно отдохнуть. Обычная мышь каждый раз забывает, где находится эта платформа, и начинает беспорядочно плавать по бассейну, тогда как умная мышь с первой попытки плывет прямо к платформе. Если мыши показывают два объекта, старый и новый, то обычная мышь не обращает внимания на новый объект, а умная мгновенно замечает его присутствие. Важнее всего то, что ученые понимают, как именно работают гены умной мыши: они регулируют синапсы мозга. Если представить себе мозг как разветвленную сеть платных дорог, то синапсы в ней играют роль пунктов взимания дорожных сборов. Если цена проезда слишком высока, машины не могут проехать; движение информации в мозгу прекращается. Но если цена невысока, машины могут проехать, а сообщения — пройти назначенным маршрутом. Нейротрансмиттеры, такие как NMDA, снижают «цену проезда» и облегчают прохождение сигналов через синапсы. У умной мыши две копии гена NR2B, которые способствуют производству нейротрансмиттера NMDA. Умные мыши подтверждают правило Хебба: обучение происходит тогда, как в мозге усиливаются определенные нервные пути. Вообще говоря, эти пути можно усилить через регуляцию синапсов, соединяющих соответствующие нервные волокна, что облегчает прохождение сигналов через синапс. Возможно, результаты этих исследований помогут объяснить некоторые особенности процесса обучения. Известно, что стареющие животные в значительной мере утрачивают способность к обучению. Это явление можно увидеть всюду в животном мире. Возможно, объясняется это тем, что ген NR2B с возрастом теряет активность. Кроме того, согласно все тому же правилу Хебба, воспоминания закрепляются в мозгу, когда между нейронами возникают сильные связи. Возможно, это действительно так, поскольку активация рецептора NMDA как раз и создает сильные связи между нейронами. Ген могучей мыши Кроме «гена умной мыши» ученым удалось выделить «ген могучей мыши», который увеличивает мышечную массу и делает мышь похожей на переразвитого культуриста. Впервые этот ген был обнаружен у мыши с необычайно развитой мускулатурой. Теперь ученые понимают, что ключевыми здесь являются гены миостатина, задача которых — сдерживать рост мышц. В 1997 г. ученые обнаружили, что, если заблокировать у мыши ген миостатина, ее мышцы разовьются сильнее обычного. Еще одно открытие было сделано вскоре после этого в Германии при исследовании новорожденного мальчика с необычайно развитыми мышцами бедер и плеч. Ультразвуковое исследование показало, что мышцы этого мальчика были вдвое больше нормальных. Секвенирование генов младенца и его матери (профессиональной спортсменки-спринтерши) выявило наличие похожих генетических структур. Более того, анализ крови мальчика показал полное отсутствие миостатина. Ученые Медицинской школы при Университете Джонса Хопкинса решили связаться с пациентами, страдающими дегенеративными мышечными расстройствами, — полученные результаты могли оказаться для них полезными. Однако, к сильному разочарованию ученых, половина телефонных звонков в их офис поступала от бодибилдеров, мечтавших о том, чтобы чудесный ген помог им нарастить громадные мускулы. Эти люди совершенно не думали о последствиях. Может быть, они вспоминали феноменальный успех Арнольда Шварценеггера, который признался, что в начале своей звездной карьеры не брезговал стероидами. Ген миостатина и способы его подавления вызвали такой общественный интерес, что даже Олимпийский комитет вынужден был создать специальную комиссию для выяснения всех обстоятельств. В отличие от стероидов, которые несложно обнаружить при помощи химических анализов, этот новый метод связан с генами и белками, за производство которых они отвечают, и обнаружить следы его применения гораздо сложнее. Исследования однояйцевых близнецов, разделенных сразу после рождения, показывают, что многие самые разные поведенческие черты обусловлены генетически. Вообще говоря, эти исследования показывают, что примерно на 50 % поведение близнецов определяется генетикой, а другая часть — окружающей средой. Среди генетически обусловленных черт — память, вербальное и пространственное мышление, скорость обработки информации, экстраверсия и склонность к поиску острых ощущений. В настоящее время даже формы поведения, которые прежде считались сложными, начинают раскрывать свои генетические корни. К примеру, степные полевки моногамны, а лабораторные мыши неразборчивы в связях. Ларри Янг из Университета Эмори потряс мир биотехнологий; он показал, что при помощи переноса одного гена степной полевки можно создать мышь, которая будет демонстрировать моногамные черты. У каждого вида мышей своя версия определенного рецептора для одного из пептидов мозга, связанного с социальным поведением и поиском партнера. Янг ввел ген, отвечающий за производство этого рецептора, от степной полевки обычной мыши и обнаружил, что мышь стала демонстрировать поведение, характерное скорее для моногамных полевок. «Несмотря на то что в эволюции такой сложной социальной формы поведения, как моногамия, скорее всего, было задействовано множество генов, — говорит Янг, — изменение в экспрессии одного-единственного из них может заметно повлиять на экспрессию отдельных компонентов этой формы поведения, к примеру на поиск партнера». Может оказаться, что депрессия и счастье тоже имеют генетические корни. Давно известно, что существуют люди, которые умеют оставаться счастливыми даже среди трагических событий. Они во всем видят светлую сторону и не пасуют перед проблемами, которые опустошают других людей. Как правило, такие люди к тому же отличаются завидным здоровьем. Гарвардский психолог Дэниел Гилберт (Daniel Gilbert) рассказал мне, что существует теория, которая все это объясняет. Согласно этой теории, у каждого из нас при рождении есть «опорная точка счастья». На протяжении жизни наше психологическое состояние, естественно, меняется, но средний уровень определяется генетически и задается при рождении. В будущем, возможно, ученые найдут способ сдвигать опорную точку при помощи лекарств или методов генотерапии; понятно, что особенно важно этодля тех, кто страдает хронической депрессией. Побочные эффекты биотехнологической революции К середине века ученые сумеют выделить многие одиночные гены, контролирующие различные человеческие качества, и научатся воздействовать на них. Это не означает, однако, что достижения ученых сразу же принесут пользу человечеству. Впереди еще останется долгая и трудная работа по исключению побочных эффектов и нежелательных последствий, на которую может уйти не один десяток лет. Вспомним, к примеру, Ахиллеса. Этот древний герой был неуязвим в бою и возглавлял победоносных греков в эпическом сражении с троянцами. Однако у его силы был фатальный недостаток. В свое время, чтобы сделать сына неуязвимым, мать окунула младенца Ахиллеса в воды волшебной реки Стикс. При этом она держала малыша за пятку, которая, к несчастью, не подверглась действию чудесных вод и осталась уязвимой. В результате в ходе Троянской войны Ахиллес был убит стрелой в пятку. Сегодня ученые пытаются понять, нет ли у новых линий животных, создаваемых в генетических лабораториях, скрытой ахиллесовой пяты. К примеру, существует уже порядка 33 линий умных мышей с улучшенной памятью и сообразительностью. Однако есть и неожиданный побочный эффект: страх иногда буквально парализует умных мышей. Вероятно, это следствие улучшенной памяти. Если таких мышей подвергают чрезвычайно мягкому действию электрического тока, они дрожат от страха. «Создается впечатление, что они помнят слишком многое», — говорит Алчино Силва (Alcino Silva) из Университета Калифорнии в Лос-Анджелесе, создавший собственную линию умных мышей. Теперь ученые понимают, что для нормальной жизни в этом мире и организации знаний забывать так же важно, как помнить. Возможно, для оптимальной организации знаний нужно, чтобы мы вовремя избавлялись от большого количества информации. История умных мышей напоминает один известный случай, имевший место в 1920-е гг. в России и описанный русским неврологом А.Р. Лурией. Это история человека с фотографической памятью. К примеру, «Божественную комедию» Данте этот человек, не зная языка, запомнил дословно с голоса после одного прочтения. Вообще, это качество очень помогало ему в работе — он был газетным репортером, — но вот с пониманием постоянно возникали проблемы. Лурия замечает: «Ошеломляющее число факторов мешало ему понимать прочитанное: каждое выражение порождало образ; образы непрерывно конфликтовали между собой». Ученые считают, что между забыванием и запоминанием должен быть определенный баланс. Если забывать слишком многое, можно, конечно, забыть боль предыдущих ошибок, но при этом забудутся также ключевые факты и умения. Если слишком многое помнить, то легко запоминать важные подробности, но непрощенная память о прошлых страданиях и неудачах может оказаться парализующей. Только разумное равновесие между двумя процессами может породить оптимальное отношение к жизни. Бодибилдеры уже гоняются за всевозможными препаратами и методами, которые обещают им почет и славу. Гормон эритропоэтин (ЕРО), к примеру, действует за счет увеличения числа кислородосодержащих красных кровяных телец — эритроцитов, что повышает выносливость организма. Однако ЕРО сгущает кровь и потому может спровоцировать инсульт или сердечный приступ. Инсулиноподобные факторы роста (IGF) могут оказаться полезными, поскольку помогают белкам наращивать объем мышц, но ученые выявили их связь с ростом опухолей. Даже если будут приняты законы, запрещающие генетические улучшения, остановить их будет очень трудно. Не следует забывать, что родители генетически запрограммированы эволюцией на то, чтобы дать своим детям все возможные преимущества. С одной стороны, это означает бесконечные уроки скрипки, балета и занятия спортом, но с другой — желание дать детям все возможные генетические улучшения — улучшенную память, внимание, атлетические способности и, возможно, даже внешность. Если родители обнаружат, что их ребенок в чем-то конкурирует с соседским (а тот, по слухам, был генетически улучшен), у них возникнет сильнейшее желание обеспечить своего ребенка теми же преимуществами. Как сказал Грегори Бенфорд (Gregory Benford), «мы все знаем, что симпатичные люди в жизни добиваются большего. Какие родители устоят перед искушением дать своему ребенку серьезное начальное преимущество в мире, где царит жесткая конкуренция?» К середине века генетические улучшения могут стать обычным явлением. Более того, они могут стать необходимыми для дальнейшего исследования Солнечной системы и жизни на негостеприимных планетах. Одни говорят, что «заказные» гены нужны, чтобы сделать нас более здоровыми и счастливыми. Другие — что следует разрешить косметические улучшения. Главный вопрос заключается в том, насколько далеко при этом можно зайти. Во всяком случае, контролировать распространение «заказных» генов, улучшающих внешний вид и способности, будет все труднее. Мы не хотим, чтобы род человеческий разделился на генетические фракции — улучшенных и неулучшенных, — но обществу придется решать демократическим путем, насколько далеко следует развивать эту технологию. Лично я считаю, что будут приняты законы, регулирующие применение генетических методов; возможно, разрешено будет пользоваться генной терапией для лечения болезней и улучшения состояния здоровья, что позволило бы человеку вести продуктивную жизнь, но жестко ограничено применение ее в чисто косметических целях. Это означает, по всей видимости, что со временем появится черный рынок, где можно будет приобрести соответствующие услуги в обход закона; так или иначе, человечеству придется приспосабливаться к ситуации, когда некоторая часть населения будет генетически модифицированной. Скорее всего, в большинстве случаев это не станет катастрофой. Уже сегодня можно пользоваться пластической хирургией для улучшения внешности, так что генетическая инженерия в этой области может и не понадобиться. Но кто-нибудь может попытаться изменить таким образом собственную личность. Вероятно, поведение человека определяется множеством генов, которые взаимодействуют между собой сложным образом, так что игры с бихевиоральными генами могут вызвать непредусмотренные побочные эффекты. Чтобы разобраться в них, потребуются десятки лет. Но что же можно сказать о самом главном генетическом улучшении — о продлении срока человеческой жизни? Далекое будущее (2070–2100 гг.) Обратить время вспять В истории человечества были люди — короли и вожди, — которые обладали властью над целыми империями. Но была одна вещь, над которой никто не был властен. Речь идет о возрасте, о старении. Неудивительно, что поиск бессмертия — одна из старейших задач человечества. В Библии Бог изгоняет Адама и Еву из Эдема за то, что люди нарушили его запрет и попробовали яблоко познания. Бог опасался, что Адам и Ева могут воспользоваться запретными знаниями, разгадать тайну бессмертия и сравняться с богами. В книге Бытия (3:22) говорится: «Вот, Адам стал как один из Нас, зная добро и зло; и теперь как бы не простер он руки своей, и не взял также от дерева жизни, и не вкусил, и не стал жить вечно». Помимо Библии, эта тема рассматривается и в других древних памятниках. К примеру, это «Сказание о Гильгамеше» — легенда о великом герое Месопотамии, относящаяся примерно к 2700 г. до н. э. Когда внезапно умер его давний и верный товарищ, Гильгамеш решил отправиться в путешествие и разгадать тайну бессмертия. Он слышал, что одному мудрому человеку и его жене боги даровали бессмертие и что только эти люди в их краях пережили Великий потоп. После эпического, полного приключений путешествия Гильгамеш нашел в конце концов разгадку тайны бессмертия и увидел, как в последний миг ее утащила змея. «Сказание о Гильгамеше» — одно из древнейших литературных произведений, и историки считают, что описанный в нем поиск бессмертия послужил источником вдохновениядля Гомера, автора «Одиссеи», и для библейского сюжета о Всемирном потопе. Многие древние цари — как император Цинь, объединивший Китай около 200 г. до н. э., — отправляли громадные флотилии на поиски Фонтана юности, но успеха не добились. (По легенде, император Цинь не велел своей флотилии возвращаться без тайны бессмертия. Моряки не смогли отыскать Фонтан юности, но побоялись вернуться с известием о неудаче и вместо этого основали Японию.) Ученые долгое время считали, что продолжительность жизни фиксирована и неизменна и что науке не под силу что-либо здесь изменить. Однако в последние годы это убеждение рухнуло под напором поразительных экспериментальных данных; в этой области произошла настоящая революция. Если в прежние времена геронтология представляла собой тихую заводь в бурной реке биологической науки, то теперь это одно из наиболее активно развивающихся направлений. На исследования в этой области тратятся сотни миллионов долларов, и уже близки, похоже, первые коммерческие результаты. В настоящее время ученые разгадывают глубочайшие тайны процессов старения, и генетика призвана сыграть в этом процессе не последнюю роль. В животном царстве мы встречаем самую разную продолжительность жизни. К примеру, наша ДНК отличается от ДНК наших ближайших генетических родственников, шимпанзе, всего на 1, 5 %, но живем мы в полтора раза дольше. Возможно, анализ горсточки генов, отделяющих нас от этих приматов, поможет нам разобраться, почему человек живет настолько дольше, чем шимпанзе. Так возникла «универсальная теория старения», соединившая отдельные нити исследований в единое логически последовательное полотно. Ученые теперь знают, что представляет собой старение: это накопление ошибок на генетическом и клеточном уровне. Ошибки накапливаются различными путями. К примеру, обмен веществ порождает свободные радикалы и окислительные процессы, нарушающие тонкую молекулярную механику наших клеток и вызывающие старение; ошибки могут накапливаться в виде молекулярных обломков, которые скапливаются внутри и снаружи клеток. Накопление генетических ошибок — побочный продукт Второго начала термодинамики: полная энтропия системы (т. е. хаос) всегда возрастает. Именно поэтому ржавление, гниение, разложение и тому подобные процессы — универсальная черта всякой жизни. Второе начало незыблемо. Все в мире, начиная от полевых цветов и наших тел до самой Вселенной, обречено на старение и умирание. Однако в законе имеется маленькая, но очень важная лазейка; в нем утверждается, что полная энтропия системы всегда возрастает. Это означает, что на самом деле можноуменьшить энтропию и повернуть процесс старения вспять в одном месте — если, конечно, где-то в другом месте энтропия при этом возрастет. Можно помолодеть за счет того, что где-то что-то при этом будет разрушено. (Именно на это намекает известный роман Оскара Уайльда «Портрет Дориана Грея». Мистер Грей загадочным и волшебным образом оставался вечно молодым. Его секрет заключался в том, что старел за него — причем ужасно старел — его чудесный портрет. Так что в целом старение продолжалось.)В действии принципа энтропии можно убедиться также, заглянув за холодильник. Внутри холодильника энтропия уменьшается с падением температуры. Но чтобы ее понизить, нам приходится задействовать специальный двигатель, который усиливает выделение тепла с задней стороны холодильника и тем самым увеличивает энтропию снаружи. Вот почему холодильник сзади всегда теплый. Как однажды сказал нобелевский лауреат Ричард Фейнман, «в биологии пока не обнаружено ничего, что указывало бы на неизбежность смерти. Поэтому мне представляется,что смерть вовсе не неизбежна и что придет время, когда биологи обнаружат, что вызывает наши проблемы, и что жуткая всеобщая болезнь бренности человеческого тела будет излечена». Действие Второго начала можно проследить на примере женского полового гормона эстрогена, который поддерживает в женщинах молодость и энергию до наступления менопаузы; после этого процесс старения ускоряется и смертность резко возрастает. Эстроген действует на женский организм примерно так, как действует высокооктановый бензин на спортивный автомобиль. Машина прекрасно работает, но лишь за счет дополнительного износа двигателя. У женщин клеточный износ может проявиться через рак груди. В самом деле, известны случаи, когда инъекции эстрогена ускоряли развитие рака груди. Так что за молодость и энергию до менопаузы женщины, вполне возможно, расплачиваются ростом полной энтропии — и, во многих случаях, раком груди. (Существуют десятки теорий, объясняющих недавний рост заболеваемости раком груди, но до концапричина этого явления неясна. Одна из теорий говорит, что отчасти это связано с полным числом менструальных циклов у женщины. В древности женщины после взросления и до самой менопаузы почти непрерывно ходили беременные, а вскоре после наступления менопаузы умирали. Это означало, что менструальных циклов у них было немного, а уровень эстрогена невысок; может быть, именно с этим был связан относительно низкий в те времена уровень заболеваемости раком груди. Сегодня девочки созревают раньше, переживают множество менструальных циклов и заводят в среднем всего по 1, 5 ребенка; кроме того, они переживают менопаузу и поэтому значительно больше подвергаются действию эстрогена, что, возможно, и ведет к росту числа случаев рака груди.) Недавно была открыта целая серия многообещающих фактов о генах и старении. Во-первых, исследователи показали, что можно получить целые поколения животных, которыебудут жить заметно дольше обычных. В частности, это явление было продемонстрировано на дрожжевых грибках, червях-нематодах и плодовых мушках, которые в лабораториях жили дольше обычного. Научный мир был поражен, когда Майкл Роуз (Michael Rose) из Университета Калифорнии в Ирвине объявил, что ему удалось путем обычной селекции увеличить продолжительность жизни плодовых мушек на 70 %. У его «супермух», или мух-долгожителей, было обнаружено большое количество особого антиоксиданта — супероксиддисмутазы (SOD), способного снижать вред, наносимый свободными радикалами. В 1991 г. Томас Джонсон (Thomas Johnson) из Университета Колорадо в Боулдере выделил ген, который он назвал AGE-1 и который, похоже, отвечает за старение у нематод и увеличивает продолжительность жизни этих червей на 110 %. «Если у людей есть что-то, подобное гену AGE-1, мы, возможно, и правда сможем добиться заметных результатов», — заметил он. К настоящему моменту ученые выделили немало генов (AGE-1, AGE-2, DAF-2), контролирующих и регулирующих процесс старения у низших организмов, но аналоги этих генов присутствуют и в геноме человека. Один ученый заметил, что изменить продолжительность жизни дрожжевых грибков почти так же просто, как включить свет, щелкнув выключателем. Если активировать определенный ген, дрожжевые клетки живут дольше. Если его заблокировать, они, соответственно, живут меньше. Разводить дрожжи, которые будут жить дольше обычного, очень просто; неизмеримо сложнее «разводить» людей, которые и без того живут так долго, что испытать данный метод практически невозможно. Однако выделение генов, ответственных за старение, в будущем, возможно, ускорится, особенно после того, как у каждого из нас появится диск с полной записью генома. К этому моменту ученые успеют накопить громадные базы данных по миллиардам самых разных генов для дальнейшего компьютерного анализа. Можно будет просмотреть и сравнить миллионы геномов детей и стариков. Сравнительный анализ этих двух возрастных групп позволит точно определить, как и где происходит старение на генетическом уровне. Даже самое предварительное сканирование помогло выделить около шестидесяти генов, в которых, судя по всему, сосредоточено старение. К примеру, ученые давно знают, что долгожительство — в некоторой степени семейная черта. Как правило, родители тех, кто живет долго, тоже жили долго. Эффект не слишком заметен, но он есть и его можно измерить. Ученые, наблюдающие за разделенными при рождении однояйцевыми близнецами, видят это на генетическом уровне. Но ожидаемая продолжительность жизни человека определяется не только генами; по мнению ученых, доля генов здесь составляет лишь 35 %. В будущем, когда каждый сможет за 100 долларов получить личный геном, можно будет статистически проанализировать при помощи компьютера геномы миллионов людей и выделить конкретные гены, определяющие, хотя бы частично, продолжительность жизни человека. Компьютерные исследования, вполне возможно, помогут ученым определить в точности, где в геноме в первую очередь происходит старение. В автомобиле, как известно, износ в основном затрагивает двигатель, цилиндры, где окисляется и сгорает бензин. Точно так же генетический анализ показывает, что старение сосредоточено в первую очередь в «двигателе» клетки — в митохондриях, или энергетической станции клетки. Этот факт позволил ученым сузить поле поисков «гена старения»; кроме того, интересно, нельзя ли ускорить восстановительные процессы в митохондриях и тем самым повернуть время вспять. К 2050 г. ученые, возможно, научатся замедлять процесс старения при помощи самых разных методов: это и терапия стволовыми клетками, и запасные части для человеческого тела, и генная терапия для ремонта и приведения в порядок стареющих генов. Человек сможет жить до 150 лет или даже дольше. К 2100 г., возможно, ученые научатся обращать вспять процессы старения при помощи активизации механизмов восстановления клетки, и тогда продолжительность жизни человека вырастет в несколько раз. Ограничим калорийность Ученые активно занимаются поисками теории, которая объяснила бы один странный факт: ограничение калорийности (т. е. уменьшение количества съедаемых нами калорий на 30 % или более) увеличивает продолжительность жизни на 30 %. Это необычное явление можно наблюдать у всех изученных до сих пор организмов — от дрожжевых клеток, пауков и насекомых до кроликов, собак, а теперь и обезьян. У животных, получающих низкокалорийную пищу, реже возникают опухоли, они реже страдают сердечными заболеваниями, диабетом и специфическими старческими болезнями. Более того, ограничение калорийности питания — единственный известный механизм, который гарантированно увеличивает продолжительность жизни; это подтверждают многочисленные эксперименты, проводившиеся с самыми разными представителями животного мира, и исключений покане обнаружено. До последнего времени единственной крупной группой животных, на которых не проводились эксперименты по низкокалорийному питанию, оставались приматы, к которым принадлежим и мы сами; причина прозаична — приматы живут долго, и эффект трудно обнаружить. Ученым особенно не терпелось увидеть результаты такого эксперимента на макаках-резусах, и наконец в 2009 г. эти долгожданные результаты были опубликованы. Исследования, проведенные Университетом Висконсина, показали, что после двадцати лет низкокалорийного питания у обезьян подопытной группы в среднем наблюдается меньше заболеваний: меньше диабета, рака, сердечных нарушений. В целом состояние здоровья подопытных обезьян заметно лучше, чем обезьян контрольной группы, питавшихся обычно. Существует теория, которая могла бы объяснить этот эффект. Согласно этой теории, природа предоставляет животным «выбор» из двух вариантов использования энергии. Во времена изобилия энергия используется в основном на продление рода, а в скудные времена тело «забывает» о размножении, начинает экономить энергию и ждать конца голодных времен. В животном царстве полуголодное существование в порядке вещей, поэтому им часто приходится делать «выбор» в пользу жизни, прекращать размножение, замедлять обмен веществ, жить дольше и ждать наступления лучших дней. Заветная цель геронтологических исследований — сохранить каким-то образом положительные стороны низкокалорийного питания без его недостатков (голодания). Судя по всему, для человека естественно набирать, а не сбрасывать вес. Вообще, жить на низкокалорийной диете не слишком приятно: приходится есть вещи, от которых отказался бы даже отшельник. Кроме того, животные, получающие особенно суровую ограниченную диету, становятся сонными, малоподвижными и теряют интерес к сексу. Но ученые упорно продолжают поиски гена, управляющего этим механизмом; может быть, мы все же найдем способ пользоваться плодами низкокалорийного питания без отрицательных егосторон. Важное открытие в связи с этим сделали в 1991 г. исследователь из MIT Леонард Гуаренте (Leonard P. Guarente) и его коллеги, занимавшиеся поиском гена, который мог бы увеличить продолжительность жизни дрожжевых клеток. Гуаренте и Дэвид Синклер (David Sinclair) из Гарварда с коллегами обнаружили, что в реализации эффектов низкокалорийного питаниязадействован ген SIR2. Этот ген отвечает за поиск в клетке энергетических резервов, и его активация происходит в периоды, когда энергия клетки истощается. Именно такого поведения можно ожидать от гена, контролирующего эффект от низкокалорийного питания. Кроме того, ученые обнаружили, что в геноме мыши и человека тоже имеются аналоги гена SIR2, известные как SIRT-гены; эти гены отвечают за производство белков сиртуинов. Затем ученые занялись поисками химических веществ, активирующих сиртуины, и нашли ресвератрол. Находка заинтриговала ученых, ведь вполне возможно, что именно это вещество обеспечивает полезность красного вина и даже объясняет «французский парадокс». При том что Франция знаменита на весь мир густыми соусами, богатыми насыщенными жирами, французы живут ничуть не меньше других. Возможно, эту загадку можно объяснить тем, что французы пьют много красного вина, в котором содержится ресвератрол. Ученые обнаружили, что активаторы сиртуинов способны защитить мышей от впечатляющего набора болезней, среди которых рак легких и прямой кишки, меланома, лимфома, диабет II типа, сердечно-сосудистые заболевания и болезнь Альцгеймера (об этом говорят исследования Синклера). Если хотя бы небольшую часть из перечисленных заболеваний у человека получится лечить при помощи сиртуинов, это будет означать революцию в медицине. Недавно была предложена теория, объясняющая замечательные свойства ресвератрола. Синклер утверждает, что главная задача сиртуинов — предотвратить активацию некоторых конкретных генов. Если вспомнить, что хромосомы одной-единственной человеческой клетки в распрямленном виде вытянулись бы почти на два метра, станет понятно, что хромосома — астрономически длинная молекула. В любой конкретный момент для жизнедеятельности организма необходима лишь небольшая часть от огромного числа генов, из которых строится хромосома; все остальные гены в это время должны быть неактивны. Клетка глушит большую часть не нужных в данный момент генов, плотно упаковывая хромосому в хроматин, для регуляции плотности которого, собственно, и нужен сиртуин. Иногда, однако, в тонком механизме хромосом возникают катастрофические нарушения: к примеру, рвется одна из нитей двойной спирали. Тогда сиртуины вступают в действие и помогают привести поврежденную хромосому в порядок. Но при этом им приходится оставлять свой пост и временно прекращать основную работу по обеспечению «молчания» генов. Гены активируются не вовремя, порождая генетический хаос. Подобные срывы, по мнению Синклера, представляют собой один из основных механизмов старения. Если это правда, то сиртуинам под силу не только приостановить старение, но и обратить его вспять. Поврежденную ДНК в наших клетках чинить и возвращать в исходное состояние очень непросто. Но Синклер считает, что старение организма вызывается в основном тем, что сиртуины отвлекаются от своей главной задачи и тем самым допускают дегенерацию клеток — а с этим уже можно бороться. Фонтан юности? Это открытие, однако, произвело и отрицательный побочный эффект: оно послужило поводом для настоящего шабаша в средствах массовой информации. Внезапно о ресвератроле заговорили в популярнейших телешоу «60 минут» и «Шоу Опры Уинфри», в Интернете возник ажиотаж, и как грибы после дождя повылезли всякие сомнительные компании, обещающие эликсир жизни уже завтра. Возникло впечатление, что все шарлатаны и продавцы счастья спешили вскочить на подножку уходящего поезда и «присосаться» к ресвератролу. (У меня была возможность поговорить с Гуаренте, человеком, который дал повод ко всем этим медиапляскам, в его лаборатории. Он был очень осторожен в выводах, так как понимал, как могут отреагировать на его результаты средства массовой информации и какие ошибочные представления и надежды все это может породить в людях. В частности, его очень тревожило появление в Интернете множества сайтов, где ресвератрол рекламировали как какой-то Фонтан юности. Отвратительно, заметил он, как люди пытаются нажиться на нежданной славе ресвератрола, хотя результаты пока не слишком надежны. Однако он не стал бы исключать вероятность того, что однажды, если Фонтан юности будет-таки найден — если, конечно, такая вещь вообще существует, — SIR2 сыграет в этом открытии не последнюю роль. Кстати говоря, коллега Гуаренте Синклер признается, что принимает ресвератрол каждый день, и в больших количествах.) Интерес к геронтологическим исследованиям в ученом сообществе так велик, что в 2009 г. Медицинская школа Гарвардского университета спонсировала проведение конференции, собравшей значительное число ведущих исследователей в этой области. В аудитории было немало тех, кто лично придерживается принципов низкокалорийного питания. Эти люди выглядят хрупкими и истощенными, но у них есть конкретная цель: они испытывают свою научную философию на себе, ограничивая себя в питании. Кроме того, они принадлежат к Клубу 120 — объединению тех, кто намерен дожить до 120 лет. Особый интерес привлекала компания Sirtris Pharmaceuticals, основанная Дэвидом Синклером и Кристофом Вестфалом (Christoph Westphal); в настоящее время несколько разработанных в компании заменителей ресвератрола проходят клинические испытания. Вестфал заявил прямо: «Через пять, шесть или семь лет появятся лекарства, способные продлить человеку жизнь». Химические вещества, которых всего несколько лет назад просто не существовало в природе, становятся объектом пристального внимания и проходят клинические испытания. SRT501 испытывается как средство против множественной миеломы и рака прямой кишки, SRT2104 — против диабета II типа. Различные группы ученых тщательно исследуют и анализируют не только сиртуины, но и большое количество других генов, белков и химических веществ (включая IGF-1, TOR и рапамицин). Только время покажет, будут ли проводимые клинические испытания успешными. В истории медицины было немало обмана, шарлатанства и мошенничества, особенно в том, что имеет непосредственное отношение к процессу старения. Но наука, в отличие от суеверия, строится на прочном фундаменте воспроизводимых, проверяемых и опровержимых данных. В настоящее время Национальный институт старения принимает программы тестирования различных веществ в плане их влияния на процесс старения; увидим, будут ли исследования на животных, давшие столь интригующие результаты, продолжены на людях. Должны ли мы умирать? Уильям Хэзелтайн (William Haseltine), пионер биотехнологий, однажды сказал мне: «Природа жизни — не смерть. Это бессмертие. ДНК — бессмертная молекула. Впервые она появилась, скажем, 3, 5 млрд лет назад. Та же самая молекула, через многократное дублирование, существует и сегодня… Правда, мы изнашиваемся, но мы уже говорили о том, что в отдаленном будущем человек сможет это изменить. Сначала — увеличить продолжительность жизни вдвое или втрое. А затем, возможно, если мы сумеем достаточно хорошо понять собственный мозг, продлить существование нашего тела и нашего мозга до бесконечности. И я не думаю, что это будет неестественный процесс». Эволюционные биологи указывают, что эволюционному давлению животные подвергаются в репродуктивном возрасте. После этого животное, вообще говоря, становится обузой для группы; возможно, именно поэтому эволюция запрограммировала так, что животные умирают от старости. Так что мы, вполне возможно, запрограммированы умереть. Однако что, если нам удастся перепрограммировать себя и получить возможность жить дольше? В самом деле, если посмотреть, к примеру, на млекопитающих, то обнаружится: чем крупнее животное, тем медленнее у него протекают процессы обмена веществ и тем дольше оно живет. Мыши сжигают громадное количество пищи на единицу веса тела и живут всего лишь около четырех лет. Слоны обладают гораздо более медленным обменом веществ и живут до семидесяти лет. Если метаболизм связан с накоплением ошибок, то этот факт, очевидно, согласуется с мнением о том, что дольше живет тот, у кого процессы обмена протекают медленнее. (Такая точка зрения может объяснить поговорку «жечь свечу с обоих концов». Я когда-то читал рассказ о духе, который пообещал человеку выполнить любое его желание. Тот захотел прожить 1000 лет. Дух исполнил желание очень просто: превратил его в дерево.) Эволюционные биологи пытаются объяснить среднюю продолжительность жизни представителей того или иного вида с позиций эволюционного преимущества: долголетие особей может помочь виду выжить в окружающем мире. С их точки зрения, продолжительность жизни определяется генетически, помогая виду выживать и распространяться. Мыши, по их мнению, живут так недолго потому, что на них постоянно охотятся многочисленные хищники, а зимой они часто замерзают насмерть. Передать свои гены следующему поколению смогут те мыши, у которых будет больше детенышей, а не те, что проживут дольше. (Если эта теория верна, следует ожидать, что, если бы мыши умели каким-то образом улетать от хищников, они бы жили дольше. В самом деле, летучие мыши, по размеру примерно соответствующие обычным мышам, живут в 3–5 раз дольше.) Единственная известная аномалия в этом смысле наблюдается у пресмыкающихся. Судя по всему, у некоторых из них срок жизни ничем не ограничен (по крайней мере нам такое ограничение неизвестно). Не исключено даже, что они могут жить вечно. Аллигаторы и крокодилы с возрастом не перестают расти и становятся все больше и больше, не теряя при этом ни силы, ни энергии. (В учебниках часто пишут, что аллигаторы живут только до семидесяти лет. Но дело, скорее всего, в том, что именно в этом возрасте умерсмотритель зоопарка, знакомый с данной особью с детства. В других учебниках честно говорится, что эти существа живут больше семидесяти лет, но точно в лабораторныхусловиях никто не проверял.) На самом деле эти животные вовсе не бессмертны, они гибнут от несчастных случаев, голода, болезней и т. п. Но если держать крокодила в неволе и хорошо кормить, он будет жить очень долго, чуть ли не вечно. Биологические часы Еще один интересный факт исходит от теломер клетки, играющих роль «биологических часов». Как шнурки на обуви заканчиваются с обоих концов пластиковыми защитными наконечниками, так хромосомы в клетках заканчиваются теломерами. После каждого цикла деления клетки эти защитные кончики становятся все короче и короче. Со временем, через шестьдесят или около того циклов деления (для клеток кожи) теломеры просто заканчиваются и пропадают. После этого клетка вступает в пору старения и перестает правильно работать. Так что теломеру можно сравнить с куском запального шнура в бруске динамита. Если запальный шнур с каждым делением становится все короче и короче, со временем он исчезнет — и клетка прекратит делиться. Это свойство клетки называется пределом Хейфлика. Судя по всему, этот предел ограничивает сверху продолжительность жизни определенных клеток. У раковых клеток, к примеру, нет предела Хейфлика; кроме того, они производят фермент под названием теломераза, который не дает теломерам укорачиваться с каждым делением. Фермент теломеразу можно синтезировать. Если применить полученный препарат к клеткам кожи, они, судя по всему, получают возможность делиться до бесконечности. По существу, они становятся бессмертными. Однако здесь существует и опасность. Раковые клетки тоже бессмертны, они делятся внутри опухоли до бесконечности. Вообще говоря, именно в этом заключается опасность рака — его клетки делятся до тех пор, пока тело не теряет способность функционировать. Так что прежде чем испытывать теломеразу на людях, этот фермент необходимотщательно изучить. При испытании любого метода лечения с использованием теломеразы, направленного на «починку» и «завод» биологических часов, необходимо тщательно проверить, не обладает ли она канцерогенным действием. Бессмертие плюс вечная молодость Для одних перспектива серьезного продления человеческой жизни — источник искренней радости, для других — ужас; стоит подумать о перенаселении и обществе, состоящем из ветхих стариков, которые быстро разорят страну, и действительно становится страшно. На самом деле комбинация биологических, механических и нанотехнологических методов может не только увеличить продолжительность жизни, но и сохранить при этом человеку молодость. Роберт Фрейтас (Robert A. Freitas Jr.), работающий над применением нанотехнологий в медицине, сказал: «Всего через несколько десятилетий такое вмешательство может стать обычным. Ежегодная проверка и чистка, а иногда и серьезные восстановительные операции позволят раз в год приводить биологический возраст человека к более или менее постоянному физиологическому возрасту, который человек сам выберет. Конечно, со временем вы все равно, может быть, умрете или погибнете от случайныхпричин, но вы проживете по крайней мере в десять раз дольше, чем живут люди сегодня». В будущем продление жизни не будет связано с черпанием воды из сказочного Фонтана юности. Более вероятно, что это будут проделывать при помощи комбинации нескольких методов: 1) выращивание новых органов по мере износа или поражения старых при помощи тканевой инженерии и стволовых клеток; 2) прием коктейля из белков и ферментов, предназначенных для ускорения восстановительных механизмов клетки, регулирования обмена веществ, перезапуска биологических часов и ослабления процессов окисления; 3) использование генной терапии для доработки генов, способных замедлить процессы старения в организме; 4) поддержание здорового образа жизни (физическая нагрузка и качественная диета); 5) использование нанодатчиков для распознавания таких заболеваний, как рак, за несколько лет до того, как они превратятся в проблему. Население, пища и загрязнение окружающей среды Один вопрос не дает покоя: если ожидаемую продолжительность жизни можно увеличить в несколько раз, не придется ли человечеству страдать от перенаселения? Ответа на этот вопрос никто не знает. Попытка оттянуть старение неизбежно вызовет множество социальных последствий. Если мы будем жить дольше, не возникнет ли на Земле перенаселенности? Некоторые, правда, указывают, что увеличение продолжительности жизни уже произошло, ожидаемая продолжительность жизни подскочила с 45 до 70, а затем и до 80 лет всего за одно столетие, и при этом вместо демографического взрыва наблюдается обратный эффект. Последнее заявление спорно, однако и вправду люди стали жить дольше, но они теперь делаюткарьеру и не спешат заводить детей. Так, коренное европейское население действительно уменьшается, и заметно. Так что если люди станут жить дольше и богаче, они, возможно, станут рожать меньше детей и с соответствующими промежутками. Человек, у которого впереди еще не один десяток лет молодости, будет планировать свое будущее соответственно и заводить детей тогда, когда сочтет нужным. Другие утверждают, что люди будут отказываться от технологий продления жизни, поскольку сочтут их неестественными и противоречащими их религиозным убеждениям. В самом деле, неформальные опросы населения показывают, что большинство людей считают смерть естественной; более того, они считают, что именно смерть придает жизни смысл. (Однако опрашивались в большинстве люди молодые и среднего возраста. Если вам придется переехать в дом престарелых, где люди уходят каждый день, если придется жить с постоянной болью, каждый день ждать смерти и задавать один и тот же вопрос, ваше мнение, возможно, изменится.) Как говорит Грег Сток из Университета Калифорнии в Лос-Анджелесе, «постепенно наши сомнения о стремлении уподобиться Богу и наши тревоги по поводу продления жизни уступят место новым словам: „А где достать таблетку?“» В 2002 г. ученые подсчитали, что — по последним демографическим данным — в настоящий момент на Земле живет 6 % всех когда-либо рожденных людей. Дело в том, что на протяжении большей части истории человечества численность населения Земли колебалась вокруг величины в один миллион человек. Пищи не хватало, и добывать ее было трудно, поэтому население не росло. Даже в период расцвета Римской империи численность ее населения, по современным оценкам, составляла всего лишь 55 млн человек. Однако за последние 300 лет численность населения Земли резко возросла — одновременно с развитием современной медицины и промышленной революцией, которая обеспечила изобилие пищи и необходимых для жизни вещей. В XX в. население земного шара побило все рекорды и с 1950 по 1992 г. более чем удвоилось: оно выросло с 2, 5 до 5, 5 млрд. В настоящий момент оно составляет 6, 7 млрд человек, и каждый год род человеческий увеличивается на 79 млн человек, что превышает полную численность населения такой страны, как Франция. Разумеется, стремительный рост населения вызвал к жизни множество предсказаний конца света, но до сих пор человечеству удается справляться с возникающими проблемами. Еще в 1798 г. Томас Мальтус предупреждал нас о том, что произойдет, когда население планеты вырастет настолько, что его невозможно будет прокормить. В результатенеурожаев, голодных бунтов, падения правительств и массового голода рано или поздно установится новое равновесие между населением и ресурсами. Поскольку рост населения идет экспоненциально, а пищевые ресурсы могут расти только линейно, достижение критической точки представлялось неизбежным. Мальтус предсказывал всевозможные бедствия к середине XIX в. Однако если подходить с позиций сегодняшнего дня, в XIX в. серьезный рост населения только начинался. К тому же шло активное освоение новых земель и основание колоний; технологии производства пищи тоже совершенствовались, поэтому до предсказанных Мальтусом катастроф дело не дошло. В 1960-е прозвучало новое мальтузианское пророчество: на Земле вскоре произойдет демографический взрыв, и к 2000 г. все рухнет. Предсказание оказалось ошибочным. «Зеленая революция» в несколько раз увеличила пищевые ресурсы. Статистические данные показывают, что рост производства продовольствия превысил рост населения земного шара, на время одержав победу над логикой Мальтуса. С 1950 по 1984 г. производство зерна выросло более чем на 250 %, в основном благодаря новым удобрениям и интенсивным технологиям ведения хозяйства. Человечество вновь сумело уйти из-под удара. Но теперь рост населения идет полным ходом, и находятся пророки, утверждающие, что мы вот-вот достигнем предела производительных возможностей планеты. Тот факт, что рост производства продовольствия замедляется и выходит на максимум (это можно сказать и о производстве зерна, и о пище, получаемой из океанов), действительно выглядит угрожающе. Главный советник по науке правительства Великобритании считает, что к 2030 г. рост населения и падение производства пищи и энергии примут поистине ураганный характер, и предупреждает о грядущей опасности. Продовольственная и сельскохозяйственная организация ООН объявила, что к 2050 г. человечество должно увеличить производство продовольствия на 70 %, чтобы прокормить дополнительные 2, 3 млрд человек, или оно окажется перед лицом катастрофы. Не исключено, что эти предсказания недооценивают подлинные масштабы проблемы. Сотни миллионов китайцев и индийцев, условно говоря, переходят в средний класс — и хотят наслаждаться роскошной жизнью, такой, какую они видят в голливудских фильмах. Им хочется иметь две машины на семью, жить в просторном загородном доме, есть гамбургеры и картошку фри… На обеспечение всего этого ресурсов земного шара может и не хватить. Лестер Браун (Lester Brown), один из ведущих мировых экологов и основатель Института всемирной вахты (WorldWatch Institute) в Вашингтоне, признался мне, что Земля, возможно, не сможет обеспечить стиль жизни, характерный для среднего класса, многим сотням миллионов людей. Надежда все же есть Однако проблески надежды все же остаются. Контроль рождаемости, принадлежавший когда-то к запретным темам, прочно утвердился в развитом мире и уверенно прокладывает дорожки в мир развивающийся. В Европе и Японии мы наблюдаем сокращение, а вовсе не рост населения. В некоторых европейских странах уровень[11]рождаемости в настоящее время составляет всего лишь 1, 2–1, 4 ребенка на семью, что намного ниже необходимых для простого воспроизводства 2, 1. В Японии же целых три напасти. Во-первых, ее население стареет быстрее всех на Земле. Ожидаемая продолжительность жизни японок, к примеру, уже двадцать лет держится на рекордном уровне. Во-вторых, падает уровень рождаемости. И в-третьих, правительство удерживает иммиграцию на чрезвычайно низком уровне. В совокупности три перечисленных демографических фактора порождают замедленную катастрофу. Европа, кстати говоря, отстает ненамного. Один из уроков, которые можно извлечь из этой ситуации, состоит в том, что процветание — лучший контрацептив. В прошлом крестьяне, не имевшие ни пенсионного плана, ни социальных гарантий, старались завести как можно больше детей, которые могли бы работать в поле и заботиться о них в старости. Тогда действовала простая арифметика: каждый новый ребенок в семье означает дополнительные рабочие руки, дополнительный доход и дополнительную уверенность в завтрашнем дне. Но когда крестьянин становится представителем среднего класса и получает все связанные с этим блага — пенсионные гарантии и комфортабельную жизнь, — семейное уравнение оборачивается другой стороной: каждый ребенок уменьшает семейный доход и снижает качество жизни. В странах третьего мира проблема обратная — население стремительно растет и значительную его часть составляют дети и подростки. Но даже там, где ожидается самый большой демографический взрыв — в Азии и в Африке южнее Сахары, — рождаемость уже начала падать по нескольким причинам. Во-первых, происходит стремительная урбанизация сельского населения; крестьяне оставляют наследственные земли и уходят в мегаполисы искать счастья. В 1800 г. в крупных городах жило лишь 3 % населения. К концу XX в. эта цифра увеличилась до 47 %, и, как ожидается, в ближайшие десятилетия рост доли городского населения продолжится. В городе ребенок обходится гораздо дороже, и это резко уменьшает среднее число детей в семье. Жилье, питание и прочие необходимые расходы в городе очень высоки, так что рабочие в трущобах мегаполисов ориентируются на ту же простую арифметику: каждый ребенок снижает уровень благосостояния семьи. Во-вторых, по мере индустриализации стран, которая происходит в Китае и Индии, растет потребность в среднем классе — а средний класс, в точности как на развитом Западе, стремится иметь меньше детей. И в-третьих, растет уровень образования женщин, что даже в бедных странах, таких как Бангладеш, порождает класс женщин, которые стремятся ограничить число детей. Благодаря масштабной образовательной программе уровень рождаемости в Бангладеш уменьшился с 7 до 2, 7, хотя в этой стране пока не набрали ход ни урбанизация, ни индустриализация. С учетом всех этих факторов ООН постоянно пересматривает свои прогнозы, связанные с ростом населения. Оценки по-прежнему различаются, но к 2040 г. население Земли может достичь 9 млрд человек. Оно и дальше будет расти, но скорость роста постепенно замедлится и сойдет на нет. По оптимистичным прогнозам, население Земли стабилизируется к 2100 г. на уровне примерно 11 млрд. Может показаться, что такая численность населения превышает потенциальную емкость экосистемы планеты. Но многое зависит от того, как определить эту самую потенциальную емкость, — ведь не исключено, что нас ожидает еще одна зеленая революция. Биотехнологии — одно из возможных решений проблемы. В Европе генномодифицированные продукты питания обрели дурную славу, которая может продержаться целое поколение. Биотехнологическая промышленность одновременно выпускала на рынок гербициды и новые сорта, устойчивые к действию этих гербицидов. Понятно, что для биотехнологической отрасли такой порядок вещей означал дополнительные продажи и дополнительные доходы, но для потребителя все это означает лишь большее количество вредныхвеществ в пище, и этот рынок вскоре рухнул. В будущем, однако, на рынок уверенно выйдут новые сорта зерновых, такие как «суперрис», т. е. сорта, специально полученные методами генной инженерии и приспособленные давать высокий урожай в засушливых и неплодородных районах. Трудно будет возразить с моральных позиций против безопасных культур, способных накормить сотни миллионов человек. Возрождение вымерших форм жизни Некоторые ученые стремятся не только продлить человеческую жизнь и обмануть смерть. Их интересует и воскрешение из мертвых. В фильме «Парк Юрского периода» ученые выделили ДНК из останков динозавров, ввели ее в яйца пресмыкающихся и таким образом вернули динозавров к жизни. Хотя никому до сих пор не удалось извлечь из динозавровых останков хоть что-нибудь пригодное к использованию, некоторые данные все же позволяют надеяться на то, что исполнение этой мечты все же возможно. К концу XXI в. в зоопарках вполне могут появиться существа, исчезнувшие с поверхности Земли тысячи лет назад. Как мы уже упоминали, Роберт Ланца сделал первый серьезный шаг в этом направлении, клонировав бантенга — существо вымирающего вида. Стыдно, если этот редкий дикий бык все-таки вымрет, считает Ланца. Сейчас ученый работает над другим проектом: создать еще одно клонированное животное, на этот раз противоположного пола. У млекопитающих пол организма определяется X- и Y-хромосомами. Ланца считает, что, поиграв с этими хромосомами, он сможет из той же замороженной туши клонировать еще одно животное, но другого пола. Если так, то зоопарки смогут наблюдать, как животные давно вымерших видов заводят детенышей. Однажды мне довелось обедать с Ричардом Докинзом из Оксфордского университета, автором книги «Эгоистичный ген». Так вот, Докинз заходит еще дальше. Он рассуждает о том, что когда-нибудь человек сможет воскресить множество форм жизни, которые не просто находятся в опасности, а давно вымерли. Для начала он отмечает, что каждые 27месяцев общее число секвенированных генов удваивается. Затем подсчитывает, что в ближайшие десятилетия стоимость секвенирования любого генома упадет до 160 долларов. Он предвидит время, когда биологи будут носить с собой портативные аппараты, способные за несколько минут считать полный геном любой встреченной формы жизни. Докинз идет еще дальше и говорит о том, что к 2050 г. человек сможет выстроить организм просто по записи генома. Он пишет в своей книге: «Я считаю, что к 2050 г. мы научимся читать на языке [жизни]. Мы будем загружать геном неизвестного животного в компьютер, который восстановит по генной записи не только внешний облик животного, но и— в подробностях — мир, в котором его предки… жили, включая тех, кто на них охотился или на кого охотились они, тех, кто на них паразитировал или на ком паразитировали они сами, места, где они устраивали логова, даже их надежды и страхи». Цитируя работу Сидни Бреннера (Sydney Brenner), Докинз выражает надежду, что когда-нибудь нам удастся реконструировать геном «недостающего звена» между обезьяной и человеком. Это стало бы поистине замечательным достижением. Судя по ископаемым останкам и ДНК, мы отделились от других высших приматов около 6 млн лет назад. ДНК человека отличает от ДНК шимпанзе всего лишь 1, 5 % генов. В будущем компьютерная программа сможет, вероятно, проанализировать ДНК человека и шимпанзе и восстановить методами математической аппроксимации состав ДНК общего предка, давшего начало обоим видам. Как только гипотетический геном нашего с обезьянами общего предка будет реконструирован методами математики, компьютерная программа сможет провести визуальную реконструкцию облика этого существа и его характеристик. Докинз называет этот проект «Геном Люси» в честь знаменитых останков самки вида Australopithecus. Он даже говорит о том, что, как только компьютер воссоздаст математически геном недостающего звена, можно будет по кирпичику сложить молекулы ДНК этого существа, внедрить их в человеческую яйцеклетку и подсадить в матку женщины, которая затем родит нашего предка.