K.B. NOTAHCEH

СПУТНИК БУРОВИКА

ББК 33.131 И 75 УДК 622.24 (031)

Иогансен К. В.

И 75 Спутник буровика: Справочник. — 3-е изд., перераб. и доп. — М.: Недра, 1990. — 303 с.: ил. ISBN 5-247-01787-0

Кратко описаны серийно выпускаемые забойные двигатели и керноприемные устройства, породоразрушающий инструмент, бурильные, обсадные и насосно-компрессорные трубы, элементы компоновки бурильной колонны, ловильный инструмент, пакерующие устройства, противовыбросовое оборудование. Рассмотрены процессы промывки и цементирования скважин, приведеныя по их испытанию. Для проведения необходимых расчетов даны прочностные характеристики, формулы, методики, номограммы, графики. В третьем издании (2-е изд. — 1986) отражены последние достижения техники и технологии бурения.

Для инженерно-технических работников, занимающихся бурением скважин.

ББК 33.131

СПРАВОЧНОЕ ИЗДАНИЕ

Иогансен Константин Владимирович

СПУТНИК БУРОВИКА

Заведующий редакцией Л. Н. Аважанская Редактор издательства А. И. Ровинская Технический редактор Г. В. Лехова Корректор И. П. Розанова ИБ № 8483

Сдано в набор 25 09.89. Подписано в печать 30.12.89. Т-17100. Формат $60\times 90^4/_{16}$. Бумага книжно-журнальная для офестной печати. Гарнитура Литературная. Печать офестная. Усл. печ. л. 19,0. Усл. кр.-отт. 19,0. Уч.-изд. л. 21,0. Тираж 23000 экз. Заказ 862/2480-4. Цена 1 р. 40 к.

Ордена «Знак Почета» издательство «Недра» 125047, Москва, пл. Белорусского вокзала, 3.

Типография № 6 ордена Трудового Красного Знамени издательства «Машиностроение» при Государственном комитете СССР по печати. 193144, г. Ленинград, ул. Моисеенко, 10.

ISBN 5-247-01787-0

© Издательство «Недра», 1981 © К. В. Иогансен, 1990, с изменениями и дополнениями

1. ВЫБОР ТЕХНОЛОГИЧЕСКИХ РЕГЛАМЕНТОВ БУРЕНИЯ СКВАЖИН

1.1. ТРЕБОВАНИЯ К КОНСТРУКЦИИ СКВАЖИНЫ

При проектировании к конструкции скважины предъявляется множество требований: экономичность, минимальная металлоем-кость, недопущение геологических осложнений, увеличение коммерческих скоростей бурения и т. п. Но главный критерий надежности конструкции скважин — недопущение грифонообразования после герметизации устья при возникшем флюидопроявлении или в процессе его ликвидации.

Пластовый флюид при поступлении в ствол скважины снижает средневзвешенную плотность промывочной жидкости в затрубном пространстве. Величина снижения плотности указывается геологической службой предприятия в технической части проекта на строительство данной скважины; она колеблется в широком диапазоне и может достигать на газовых месторождениях 100 %. Поэтому после закрытия превенторов в случае флюидопроявления в стволе скважины возникает внутреннее давление (рис. 1.1). Во время длительного простоя вследствие выделения из флюида

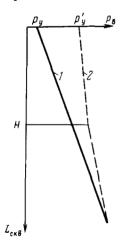


Рис. 1.1. Распределение внутреннего давления по стволу скважины: 3 — в начале проявления; 2 — при полном замещении промывочной жидкости газом и поглощении его на глубине Н

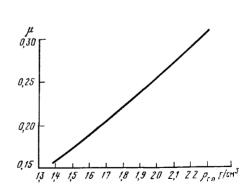


Рис. 1.2. Зависимость коэффициента Пуассона от плотности горных пород

газа, пузырьки которого всплывают, на устье скважины образуется газовая шапка. Но при достижении на устье определенного давления начинается поглощение в пласт и может произойти полное замещение промывочной жидкости в стволе скважины пластовым или попутным газом. Поэтому при газовом факторе более 100 м³/т нефтяную скважину необходимо рассчитывать как газовую. В результате всплытия газа и соответственно оттеснения жидкости в пласт из ствола скважины величина внутреннего давления перераспределяется по глубине (см. рис. 1.1). Поэтому для предотвращения гидроразрыва пород в открытой части ствола, а следовательно, и грифонообразования, необходимо, чтобы внутреннее давление, действующее на горные породы, было меньше давления начала поглощения.

Давления начала поглощения и гидроразрыва для глиносодержащих пород практически мало отличаются друг от друга. А в сильно кавернозных, трещиноватых или имеющих большую открытую пористость породах давление начала поглощения незначительно превышает пластовое.

В первом приближении давление начала поглощения (МПа) на глубине L можно вычислить по известным формулам и для дальнейших расчетов принять меньшее из полученных значений:

$$p_{\text{nor}} = 0.0088L + 0.66p_{\text{nn}}, \qquad p_{\text{nor}} = \frac{\mu}{1 - \mu} (p_{\text{rop}} - p_{\text{nn}}) + p_{\text{nn}},$$
$$p_{\text{nor}} = 2 \cdot 10^{-4}L + 2.89 \cdot 10^{-6}L\beta^{0.572},$$

где $p_{\text{пл}}$ — пластовое давление на глубине L, МПа; $p_{\text{гор}}$ — горное давление вышележащих горизонтов, МПа, $p_{\text{гор}} = 0,01 \rho_{\text{гор}} L$; μ — коэффициент Пуассона (для нормально уплотненных глин значение μ приведено на рис. 1.2); β — угол залегания пластов майкопских глин на глубине L, градус; $\rho_{\text{гор}}$ — средневзвешенная плотность горных пород вышележащих горизонтов, определяемая геофизическими методами или лабораторными анализами кернового материала по близлежащим скважинам, г/см³.

Значение д для различных пород

Глина с прослодии	песчаников	0.33_0.40
Глина плотная		0,25-0,40
	алевролитов	
Глинистые сланцы		0,10-0,20
Песчаник		0,30 - 0,35
Гравий		0.26 - 0.29

Более точный метод определения давления начала поглощения пород — нагнетание промывочной жидкости в ствол скважины. После разбуривания цементного стакана и башмака обсадной колонны необходимо бурить ствол скважины на 1—2 м и довести все параметры промывочной жидкости до указанных в геолого-техническом наряде (ГТН) величин, затем поднять инструмент в башмак колонны, закрыть превентор и закачать промывочную жид-

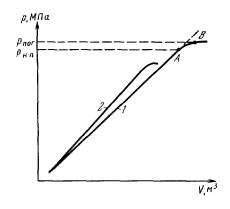
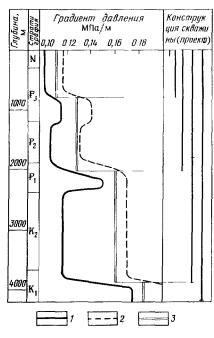



Рис. 1.3. График давления при закачивании в пласт воды (кривая 2) и промывочной жидкости (кривая I)

Рис. 1.4. График совмещенных давлений для выбора конструкции скважины:

1, 2, 3 — градиенты давлений порового, поглощения, промывочной жидкости соответственно

кость через бурильные трубы до начала поглощения ее в пласт. Закачку необходимо производить порциями по 40—50 л с интенсивностью 40—60 л/мин, после каждой порции давать выдержку времени 1,5—2 мин для стабилизации давления. Точка А отклонения от прямолинейной зависимости указывает на начало поглощения пород (рис. 1.3). Продолжать закачку до получения двух-трех точек стабилизации давления (точка В). Если будет закачано в пласт более 0,5 м³, то трещины после сбрасывания давления не сомкнутся и целостность пласта в будущем может не восстановиться.

Давление начала поглощения будет значительно ниже при закачке воды в пласт (см. рис. 1.3). В процессе углубления скважины периодически проводят аналогичные закачки промывочной жидкости в пласт, установив предварительно над забоем пакер. Давление снижают плавно со скоростью 0,5-1 МПа/мин через штуцер, иначе произойдет обвал стенок скважины. Градиент давления поглощения $\Delta\alpha_{\text{пог}}$ (МПа/м) рассчитывают по формуле

$$\Delta \alpha_{\text{nor}} = \frac{p_{\delta-\tau}}{L} + 0.01 \rho_{\text{H}},$$

где $p_{6.\,\mathrm{T}}$ — давление в бурильных трубах на устье в момент начала поглощения, МПа (точка A, рис. 1.3); $\rho_{\mathrm{ж}}$ — плотность промывочной жидкости при бурении в определяемом интервале, г/см³.

Рассчитав градиенты поглощения пород по глубине скважины по приведенным выше формулам или имея фактические их значения по близлежащим скважинам, строят график (рис. 1.4). На графике проводят градиенты пластовых (поровых) давлений и давлений начала поглощения. Параллельно оси глубин снизу вверх проводят эквиваленты давлений промывочной жидкости для интервалов максимальной мощности. Граничными критериями интервала применения промывочной жидкости одинаковой плотности является условие

$$\Delta \alpha_{\text{nor. min}} \geqslant 0.01 \rho_{\text{x}} \geqslant a \Delta \alpha_{\text{n.n. max}}$$

где a — коэффициент запаса (для скважин или интервалов скважин глубиной до 1200 м $a=1\div 1,15$, для интервалов 1200—2500 м $a=1,05\div 1,1$, для интервалов ниже 2500 м $a=1,04\div 1,07$); $\Delta\alpha_{\text{пог. min}}$ — минимальный градиент поглощения пород в определяемом интервале, МПа/м; $\Delta\alpha_{\text{пл. max}}$ — максимальный градиент пластового (порового) давления в определяемом интервале, МПа/м.

В первом приближении границы изменения эквивалентов давления промывочной жидкости и являются глубинами спуска обсадных колонн (см. рис. 1.4). Определенные таким методом глубины спуска обсадных колонн Н должны удовлетворять условию прочности горных пород в интервале необсаженного ствола скважины (т. е. до момента спуска следующей обсадной колонны) в случае ликвидации флюидопроявления:

$$H \gg H_{\text{cm}} \frac{\Delta \alpha_{\text{max}} - 0.01 \rho_0}{K \Delta \alpha_{\text{max}} - 0.01 \rho_0}$$
,

где $\Delta\alpha_{\rm nn}$ — проектный градиент пластового давления на глубине спуска последующей обсадной колонны $H_{\rm cn}$, МПа/м; $\Delta\alpha_{\rm nor}$ — проектный градиент начала поглощения пород под башмаком обсадной колонны на глубине H, МПа/м; ρ_0 — плотность промывочной жидкости с учетом поступления в нее пластового флюида в процессе проявления, г/см³ (для газовых скважин глубиной до 1200 м $\rho_0=0$; в остальных случаях величина ρ_0 указывается геологической службой предприятия); K — коэффициент безопасности, $K=0.9\div0.95$.

Соблюдение этой зависимости обязательно, так как известны случаи грифонообразования при глубине спущенной колонны более 1200 м. Проверив правильность расчета глубины спуска последней промежуточной колонны, уточняют глубины спуска всех предыдущих колонн вплоть до кондуктора.

Во время эксплуатации скважины, а также открытого фонтана, происходит прогрев обсадных колонн, цементного камня за ними и всего комплекса горных пород. Поэтому при наличии в разрезе многолетнемерзлых пород с открытой льдистостью обсадная колонна (кондуктор или даже первая промежуточная) должна быть спущена на 50—100 м ниже границы нулевой изотермы

в плотные породы. В противном случае даже после нескольких часов фонтанирования скважины (из неперекрытого обсадной колонной пласта) происходят оттаивание пород, провал устья и грифонообразование.

1.2. ВЫБОР КОНСТРУКЦИИ СКВАЖИНЫ

Геологическая служба предприятия обусловливает диаметр эксплуатационной колонны. Диаметры обсадных колонн, глубины спуска которых определены согласно рис. 1.1, рассчитывают снизу вверх. Соотношение между диаметрами эксплуатационной колонны и долота выбирают в соответствии с приведенными ниже данными или по формуле

$$D_{\pi} = (1.0447 + 0.00022D) D_{\text{M}}$$

где $D_{\rm m}$ — диаметр долота, мм; D — диаметр обсадных труб, мм; $D_{\rm m}$ — диаметр муфты обсадных труб, мм.

Соотношение диаметров долот и спускаемых колонн

Минимальный диаметр долота, мм	139,7	165,1	190,5	215,9	244,5
Диаметр обсадной колонны, мм	114,3	127,0	139,7	168,3	193,7
•		139,7 *	168,3 *	177,8	219,1 *
Минимальный диаметр долота, мм	269, 9	295,3	349,2	393,7	490,0
Диаметр обсадной колонны, мм	219,1	244,5	273,1	323,9	377,0
	244,5 *		298,9	351.0	425,5

^{*} Безмуфтовые трубы.

Затем подбирают промежуточную колонну, исходя из диаметра долота под эксплуатационную колонну. Подбор остальных промежуточных колонн и кондуктора, а также долот проводят аналогично.

Для глубоких скважин после определения конструкции проводят проверочный расчет обсадных труб на прочность. Определив минимально необходимые толщины стенок труб промежуточных колонн, задаются величиной абсолютного износа труб Δ и проверяют их на механический износ в процессе бурения и спускоподъемных операций (СПО) под следующую колонну по приведенной ниже методике. Все обсадные колонны, спускаемые в искривленные участки ствола скважины, проверяют на проходимость в этих участках.

Минимальные диаметры УБТ наддолотного комплекта, обеспечивающие успешный спуск обсадных колонн в скважину, приведены в табл. 1.1.

Минимальная длина УБТ, обеспечивающая успешный спуск обсадных колонн в скважину,

$$\frac{6000}{q} \leqslant l \geqslant \frac{D_{\pi} - d_{YBT}}{0.0349 \, \Delta \psi}$$
,

где q — масса 1 м УБТ, кг; $D_{\text{дол}}$, $d_{\text{УБТ}}$ — диаметры долота и УБТ, см.

Таблица 1.1

Диаметр			Диаметр долота, мм							
обсадной (Δф) колонны	490	393,7	349,2	295,3	269,9	244,5	215,9	190,5	161	
426	0,8	407	[
377	1,0	299					_			_
351	1,2	254	340			_	_			
324	1,3	229	299				_		_	_
299	1,6		229	299			_		_	_
273	2,0	_	203	229	254 *	-				_
245	2,3	_		203	229	229 *		_		
219	2,8		_	_	178	203	203 *			
194	3,5	_	_]	178	178	178 *		
178	4,0	_			_	146	146	178	_ [
168	5,0	_			_		146	146	146 *	
140	7,0			_				133	133	133

Примечания. 1. Звездочкой обозначены диаметры УБТ при использовании безмуфтовых труб. 2. [$\Delta \phi$] — допустимая интенсивность пространственного искривления ствола скважины, градус на $10~{\rm M}$

Жесткость УБТ, обеспечивающая успешный спуск обсадных колонн

$$\frac{d_{\text{YBT}}^{4} - d_{\text{BYBT}}^{4}}{D^{1} - D_{\text{B}}^{4}} \gg 1,$$

где $d_{\rm УБТ}$ и $d_{\rm B.\, УБТ}$ — наружный и внутренний диаметры УБТ, см; D и $D_{\rm B}$ — наружный и внутренний диаметры спускаемых обсадных труб, см.

Соотношение диаметров долот и забойных двигателей ОСТ 26-02-954—74

Диаметр долота, мм	97—114	118—132	132,7—158,7
Диаметр забойного двигате	85	105	127
Диаметр долота, мм	161—172	187,3—190,5	196,9—200
Диаметр забойного двигате.	143	164	172
Диаметр долота, мм	 212,7—228,6	243—250,8	269,9
Диаметр забойного двигате.	195	215	240
Диаметр долота, мм Диаметр забойного двигател	295—320 265	346—508 315	

1.3. ВЫБОР ПРОФИЛЯ СКВАЖИНЫ

8

При необходимости проводки наклонной скважины с заданным геологической службой предприятия отходом от вертикали A технологическая служба выбирает профиль (рис. 1.5), основы-

Рис. 1.5. Типы профилей наклонных скважин с отходом от вертикали A: 1— двухинтервальный; 2, 5— трехинтервальный; 6— четырехинтервальный; 4— пятиинтервальный

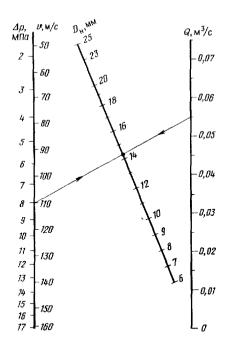


Рис. 1.6. Номограмма определения диаметра насадок для получения гидромониторного эффекта

ваясь на ее расчетной конструкции, технических возможностях предприятия, квалификации и опыте исполнителей, достигнутом технологическом уровне бурения в данном регионе. При выборе профиля необходимо учитывать естественное искривление скважин в азимутной плоскости, имеющееся на данном месторождении. В случае дальнейшей эксплуатации скважин штанговыми насосами градиент кривизны ствола в интервале над насосом не должен превышать 0,5° на 10 м во избежание протирания труб и поломки штанг.

После выбора профиля устанавливают глубину скважины и ее характерные точки по инструменту, рассчитывают траекторию ствола, компоновки для бурения вертикальных, кривых и наклонных участков. Траекторию ствола определяют практически методом подбора, задаваясь градиентами набора и спада кривизны, а также максимальным углом наклона.

1.4. ВЫБОР ТИПА ШАРОШЕЧНОГО ДОЛОТА

Рациональное сочетание типа шарошечного долота и разбуриваемой породы приведено в табл. 1.2.

Диаметр насадок $D_{\rm H}$ шарошечных долот выбирают по номограмме (рис. 1.6).

Тип долота	Краткая литологическая характеристика горных пород
M	Глины плотные, слоистые и неслоистые, известковистые и неизвестковистые, часто песчанистые и слюдистые, иногда с пиритом и конкрециями сидеритов, с прослоями рыхлых глинистых песчаников и алевролитов, глинистых слюдистых мергелей и известняков Глины с прослоями мелкозернистого песка и вулканического пепла Известняки и ракушечники
МЗ	Переслаивание плотных глин, алевролитов, глинистых или карбонатных песчаников и мергелистых известняков Чередование аргиллитов известковистых и неизвестковистых; алевролитов, песчаников разнозернистых кварцевых с известково-ангидритовым цементом, глинистых сланцев Известняки органогенные с прослоями разнозернистых песчаников, слюдистых глин и алевролитов
MC	Глины песчанистые, аргиллитоподобные, опоковидные Аргиллиты с прослоями разнозернистых песчаников, глинистых алевролитов, известняков и конгломератов, сцементированных известково-глинистым цементом
мсз	Глины пестроцветные и алевролиты с прослоями известняков Чередование аргиллитов известковистых и неизвестковистых с алевролитами и песчаниками разнозернистыми, известковистыми, кварцевыми, слабослюдистыми Аргиллиты, алевролиты, песчаники различного состава с прослоями песчанистых доломитов Конгломераты разногалечные, местами крупновалунные, с прослоями песчаников и глин Известняки органогенные, глинистые, доломитизированные с прослоями доломитов, мергелей, ангидритов или аргиллитов Переслаивание песчаников разнозернистых, кварцевых, глинистых; плотных аргиллитов, иногда известковистых, местами переходящих в мергель, и аргиллитов тонкослоистых, кварцевых, глинистых
С	Известняки и доломиты пелитоморфные, мелкокристаллические, местами брекчиевидные, слабо доломитизированные; известняки ракушечники; мел писчий Глины плотные, тонкослоистые, опоковидные, аргиллитоподобные, алевритистые, известковистые, слюдистые, иногда загипсованные Аргиллиты слоистые, известковистые; мергели песчанистые Песчаники различной плотности, разнозернистые, часто известковистые и глинистые; алевролиты плотные и рыхлые, слюдистые, известковистые Конгломераты разногалечные, местами крупновалунные Каменная соль крупнокристаллическая, с прослоями глин, ангидритов, доломитов, известняков
CT	Известняки и доломиты разнозернистые, иногда брекчиевидные, неравномерно глинистые, участками окремнелые Переслаивание глин алевритистых, алевролитов, песчаников слабосцементированных, аргиллитов известковистых, ангидритов, гипсов, мергелей Каменная соль крупнокристаллическая, с прослоями глин, мергелей, ангидритов, доломитов

Продолжение табл. 1.2

Тип долота	Краткая литологическая характеристика горных пород
СЗ	Известняки органогенно-обломочные, местами перекристаллизованные, иногда доломитизированные, с прослоями аргиллитов Переслаивание плотных глин, иногда аргиллитоподобных, в различной степени песчанистых, известковистых, загипсованных с песчаниками разнозеринстыми, кварцевыми, известковистыми, глинистыми, аргиллитами слюдистыми, иногда окремнелыми, алевролитами кварцевыми, песчанистыми, известковистыми
T	Известняки мелко- и тонкозернистые, местами перекристаллизованные, часто доломитизированные, в различной степени окремнелые Доломиты мелко- и тонкозернистые, пелитоморфные, плотные, иногда массивные, загипсованные, ангидритизированные Переслаивание глин и глинистых сланцев песчанистых, слюдистых, алевролитов кварцевых, глинистых и песчаников разнозернистых, кварцевых, полимиктовых, слюдистых. Встречаются конгломераты и гравеллиты
T3, TK3	Известняки органогенные, тонкозернистые, пелитоморфные, участками окремнелые, доломитизированные. Доломиты мелко- и тонкозернистые, участками окремнелые, с включением гипса Аргиллиты, иногда окремнелые Алевролиты и песчаники мелкозернистые, кварцевые Роговики, андезиты, андезито-базальты
K	Известняки и доломиты окремнелые
ОҚ	Алевролиты тонкослоистые Сланцы углисто-глинистые, филлитизированные Песчаники кварцевые, кварцитовидные Андезиты, андезито-базальты

2. НАКЛОННОЕ БУРЕНИЕ

2.1. ОБЩАЯ ЧАСТЬ Методы Бурения

Наклонно направленные скважины бурят в основном при разработке месторождения кустовым способом. Так как интенсивность набора кривизны при проводке эксплуатационных скважин не превышает 1,3° на 10 м, вписываемость забойных двигателей, обсадных колони или забойного оборудования при их спуске удовлетворяет установленным требованиям. При разработке месторождений штанговыми насосами во избежание быстрого протирания лифтовой колонны интенсивность набора кривизны желательна не более 0,5° на 10 м. При подъеме компоновок в процессе бурения и ремонтных работ в наклонной скважине возникают значительные силы сопротивления. Поэтому после выбора и расчета профиля необходимо определить проектные усилия на крюке при подъеме компоновки в процессе бурения и при подъеме НКТ для замены забойного оборудования (см. разд. 5). При интенсивности набора кривизны более 0,6° на 10 м обсадную колонну в случае необходимости поднять практически невозможно. На практике силы сопротивления при подъеме НКТ могут в 1,1-1,5 раза превысить собственный вес.

При бурении наклонных скважин необходимо учитывать следующее:

расстояние между устьями скважин на кусте должно быть не менее 2 м для нефтяных и 3 м для газовых скважин при бурении с МСП и 5 м при бурении нефтяных скважин на суше;

глубина зарезки наклонного участка на каждой последующей скважине, отличающейся по азимуту менее чем на 20° от предыдущей, увеличивается на 30 и 50 м при глубине зарезки соответственно до 500 м и свыше 500 м;

начало набора кривизны должно быть ниже башмака обсадной колонны минимум на 30 м;

масса УБТ над кривым переводником должна не менее чем в 1,5 раза превышать массу турбобура;

при темпах набора или спада кривизны более 0,6° на 10 м в стволе скважины образуются желобные выработки;

исправление азимута при наклоне ствола более 20° очень сложно и всегда сопровождается снижением угла;

темп исправления азимута при углах наклона более 15° не должен превышать 30° на 100 м;

периодичность определения направления ствола инклинометрией осуществляется на участке набора или исправления азимута через 25—50 м, на участках стабилизации или спада кривизны через 200—300 м.

При проектировании профиля предусматривается изменение траектории ствола только в зенитной плоскости.

2.2. РАСЧЕТ ПРОФИЛЯ

Схема расчета профиля наклонной скважины приведена в табл. 2.1. В формулах приняты следующие обозначения: H — глубина по вертикали; A — отход забоя скважины от устья в Таблица 2.1

		Величины						
Номер рисунка вадаваемые	вадаваемые	расчетные	рассчитываемы е для проверки					
2.1 2.2 2.3 2.4	— α (или R _H) R _H , R _C Π, β R _H , R _C Π α	$ \begin{array}{c} R_{\rm H}, \; \alpha, \; l_{\rm H} \\ R_{\rm H} \; (\text{или} \; \alpha), \; h_{\rm H}, \; l_{\rm H}, \; h_{\rm CT}, \; l_{\rm CT} \\ \alpha, \; l_{\rm H}, \; l_{\rm CH} \\ \beta, \; a_{\rm CH}, \; h_{\rm H}, \; l_{\rm H}, \; l_{\rm CT}, \; l_{\rm CH} \end{array} $	а _н , а _{ст} а _н , а _{ст} а _{ст} , h _н , h _{сп}					

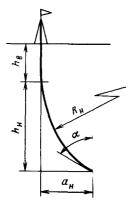


Рис. 2.1. Двухинтервальный профиль

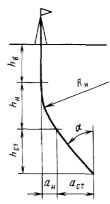


Рис. 2.2. Трехинтервальный профиль с участком стабилизации

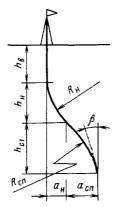


Рис. 2.3. Трехинтервальный профиль без участка стабилизации

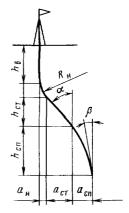


Рис. 2.4. Четырехинтервальный профиль с участком стабилизации

горизонтальной проекции; L — длина скважины по инструменту; $h_{\rm B}$ — длина вертикального участка ствола скважины от устья; $R_{\rm H}$, $l_{\rm H}$, $h_{\rm H}$, $a_{\rm H}$ — радиус, длина, вертикальная и горизонтальная проекция участка набора кривизны; $l_{\rm cr}$, $h_{\rm cr}$, $a_{\rm cr}$ — длина, вертикальная и горизонтальная проекции участка стабилизации кривизны; $R_{\rm cn}$, $l_{\rm cn}$, $h_{\rm cn}$, $a_{\rm cn}$ — радиус, длина, вертикальная и горизонтальная проекции участка спада кривизны; α , β — максимальный зенитный и конечный углы наклона ствола скважины (все линейные размеры приведены в м, углы в градусах).

Геологическая служба предприятия задает величины H и A, в случае необходимости и конечный угол β .

Двухинтервальный профиль (см. рис. 2.1).

Так как величина $h_{\rm B}$ выбрана по геолого-технологическим соображениям, то при заданном значении A возможен только один вариант двухинтервального профиля:

$$R_{\rm H} = \frac{A^2 + (H - h_{\rm B})^2}{2A}$$

или соответственно

$$\alpha = \arccos \frac{(H - h_{\rm B})^2 - A^2}{(H - h_{\rm B})^2 + A^2}, \quad l_{\rm H} = 0.01745 R_{\rm H} \alpha, \quad L = h_{\rm B} + l_{\rm H}.$$

Если расчетный угол наклона α окажется большим и есть опасность по техническим причинам его не достичь, то, уменьшив значение α (но не более, чем до α_{\min}), можно рассчитать трехинтервальный профиль.

$$\alpha_{\min} = \operatorname{arctg} \frac{A}{H - h_{B}}$$
.

T рехинтервальный профиль с участком стабилизации (см. рис. 2.2).

Задавшись величиной а, находим радиус набора кривизны

$$R_{\rm H} = \frac{(H - h_{\rm B})\sin\alpha - A\cos\alpha}{1 - \cos\alpha}.$$

Проверяем техническую целесообразность такого темпа набора кривизны по табл. 2.2.

Таблица 2.2

Темп набора	Радиус	Темп набора	Радиус	Темп набора	Радиус
(спада) кривизны,	кривиз-	(спада) кривизны,	кривиз-	(спада) кривизны,	кривиз-
градус/10 м	ны, м	градус/10 м	ны, м	градус/10 м	ны, м
0,2	2870	0,7	820	1,2	475
0,3	1900	0,8	715	1,3	440
0,4	1430	0,9	635	1,4	410
0,5	1150	1,0	570	1,5	380
0,6	950	1,1	520	1,6	360

Если величина $R_{\rm H}$ не удовлетворяет условию по каким-либо соображениям, то, задавшись ее значением методом подбора, определяем соответствующее значение α по приведенному выше равенству. Угол набора кривизны при заданном $R_{\rm H}$ можно также установить по формуле

$$\alpha = \arccos \frac{R_{\rm H} (R_{\rm H} - A) + (H - h_{\rm B}) \sqrt{(H - h_{\rm B})^2 + A^2 - 2AR_{\rm H}}}{(R_{\rm H} - A)^2 + (H - h_{\rm B})^2}.$$

Определив $R_{\rm H}$ (или соответственно α), находим остальные элементы профиля:

$$h_{ exttt{H}}=R_{ exttt{H}}\sinlpha, \qquad l_{ exttt{H}}=0.01745R_{ exttt{H}}lpha, \qquad h_{ exttt{CT}}=H-h_{ exttt{B}}-h_{ exttt{H}}, \ l_{ exttt{CT}}=h_{ exttt{ET}}/\coslpha, \qquad L=h_{ exttt{B}}+l_{ exttt{H}}+l_{ exttt{CT}}.$$

Проводим проверочные расчеты:

$$a_{\text{H}} = (H - h_{\text{B}}) \sin \alpha - A \cos \alpha, \qquad a_{\text{CT}} = h_{\text{CT}} \operatorname{tg} \alpha, \qquad A = a_{\text{H}} + a_{\text{CT}}.$$

Трехинтервальный профиль без участка стабилизации (см. рис. 2.3). Для расчета данного профиля необходимо задаться темпами набора и спада кривизны (т. е. $R_{\rm H}$ и $R_{\rm cu}$), а также конечным углом наклона ствола β . Максимальный угол наклона ствола

$$\alpha = \arcsin \frac{(H - h_{\rm B}) + R_{\rm cu} \sin \beta}{R_{\rm H} + R_{\rm cu}}.$$

Если даже принять конечный угол наклона равным нулю, а радиус набора кривизны 440 м, и при этом максимальный угол α окажется большим, то необходим участок стабилизации.

Определяем остальные элементы профиля:

$$l_{\rm H} = 0.01745 R_{\rm H} \alpha$$
, $l_{\rm ch} = 0.01745 R_{\rm ch} (\alpha - \beta)$, $L = h_{\rm B} + l_{\rm H} + l_{\rm ch}$.

Проверочные расчеты проводим по формулам:

$$h_{\rm H} = R_{\rm H} \sin \alpha$$
, $h_{\rm cm} = R_{\rm cm} (\sin \alpha - \sin \beta)$; $H = h_{\rm B} + h_{\rm H} + h_{\rm cm}$; $a_{\rm H} = R_{\rm H} (1 - \cos \alpha)$, $a_{\rm cm} = R_{\rm cm} (\cos \beta - \cos \alpha)$, $A = a_{\rm H} + a_{\rm cm}$.

Четырехинтервальный профиль (см. рис. 2.4). Если по какимлибо соображениям выбран четырехинтервальный профиль, то для его расчета необходимо задаться несколькими величинами: максимальным зенитным углом α , темпом спада кривизны (т. е. $R_{\rm cn}$) и темпом набора кривизны (т. е. $R_{\rm k}$).

Рассчитаем элементы участка набора кривизны и конечный угол скважины по формулам

$$a_{\rm H} = R_{\rm H} (1 - \cos \alpha), \qquad h_{\rm H} = R_{\rm H} \sin \alpha, \qquad l_{\rm H} = 0.01745 R_{\rm H} \alpha,$$

$$\cos (\alpha - \beta) = \frac{R_{\rm CH} - (H - h_{\rm B} - h_{\rm H}) \sin \alpha + (A - a_{\rm H}) \cos \alpha}{R_{\rm CH}}.$$

Определив конечный угол скважины, вычислим остальные элементы профиля:

$$a_{
m c \pi} = R_{
m c \pi} (\cos \beta - \cos \alpha), \qquad h_{
m c \pi} = \frac{a_{
m c \pi}}{
m tg \, [(\alpha + \beta)/2]}, \ l_{
m c \pi} = 0.01745 R_{
m c \pi} (\alpha - \beta), \qquad h_{
m c \pi} = H - h_{
m B} - h_{
m H} - h_{
m c \pi}, \ l_{
m c \pi} = h_{
m c \pi}/\cos \alpha, \qquad L = h_{
m B} + l_{
m B} + l_{
m c \pi} + l_{
m c \pi}.$$

Проверочный расчет:

$$a_{\text{cr}} = h_{\text{cr}} \operatorname{tg} \alpha, \qquad A = a_{\text{H}} + a_{\text{cr}} + a_{\text{cr}}.$$

Четырехинтервальный профиль требует набора большего зенитного угла, чем трехинтервальный с участком стабилизации, а если необходимо выйти на вертикальный участок ($\beta=0$), зенитный угол должен быть еще большим.

2.3. ҚОМПОНОВҚИ ПРИ БУРЕНИИ НАҚЛОННЫХ СКВАЖИН

Необходимый угол перекоса резьб кривого проводника для набора кривизны определяют по формуле

$$\Delta \alpha = \frac{1146 \sin{(\alpha_{\rm H} - \beta - \gamma)}}{L_1 + L_2}$$
,

где $\Delta\alpha$ — проектная интенсивность набора кривизны, градус на 10 м; $\alpha_{\rm n}$ — угол перекоса резьб кривого переводника, градус; L_1 — расстояние от торца долота до плоскости изгиба кривого переводника, м; L_2 — расстояние от плоскости изгиба кривого переводника до верхнего среза турбобура, м;

$$\beta = \arcsin \frac{D_{\pi} - D_{\tau}}{2L_1}; \qquad \gamma = \arcsin \frac{D_{\pi} - D_{\tau}}{L_2};$$

 $D_{\rm д}$, $D_{\rm T}$ — диаметры соответственно долота и турбобура, м.

Для успешного набора кривизны необходимо, чтобы масса верхнего плеча кривой компоновки длиной L_2 была в 1,5 раза больше массы нижнего плеча длиной L_1 при большей или одинаковой жесткости.

Для обеспечения проводки скважины без значительного фрезерования ее стенок долотом необходимо соблюсти следующее условие:

$$\Delta \alpha \leqslant 573 \frac{D_{\pi} - D_{\tau}}{L_1^2}$$
.

Таблица 2.3

Переворот	Толщина	Переворот	Толщина	Переворот	Толщина
шарошки	кольца	шарошки	кольца	шарошки	кольца
20	0,2	70	0,65	120	1,1
30	0,3	80	0,75	130	1,2
40	0,4	90	0,85	140	1,3
50	0,5	100	1,00	150	1,4
60	0,6	110	1,05	160	1,5

Примечание. Размеры в мм.

Из условия нормальной вписываемости кривой компоновки в искривленный участок ствола скважины $L_2 \leqslant 2,83L_1$.

Для успешной и качественной зарезки необходимо, чтобы шарошка долота (желательно третья, так как она имеет более мощную опору) была расположена на верхней образующей плоскости искривления. Толщина регулировочного кольца, расположенного между торцами долота и переводника, в зависимости от переворота оси шарошки от образующей плоскости искривления указана в табл. 2.3 (момент крепления долота 12—14 кН·м).

Набор кривизны с интенсивностью 0,4—0,5° на 10 м можно осуществить центратором, установленным от торца долота на расстоянии 1,2—2 м. Диаметр центратора должен быть меньше диаметра долота на 6—15 мм, длина лопастей не более 300 мм, число лопастей не менее 5, ширина лопасти должна быть равна расстоянию между ними, причем возможен наклон лопастей для полного перекрытия опорной поверхности. Износ центратора по диаметру допускается на 4 мм.

Соотношение диаметров долота и центратора

Диаметр долота, мм	394	295	216	190	161
Диаметр центратора, мм	380	280	206	180	155

Для стабилизации и спада кривизны с интенсивностью $0,2-0,3^\circ$ на 10 м также можно применять указанный выше центратор. Расстояния от торца долота до места установки центратора (в м) приведены в табл. 2.4. Данные таблицы рассчитаны для условия прочности пород на сжатие $P_{\rm m} \geqslant 2000$ МПа, при бурении пород меньшей прочности центратор необходимо приблизить к долоту на 1-3 м, но не ближе чем на 2 м (от долота).

Для более жесткой стабилизации направления ствола скважины можно применять два центратора: один полноразмерный устанавливают сразу над долотом (выполняет функции калибратора), другой диаметром меньше на 6—8 мм — на расстоянии 6—9м от первого.

Нормы допустимых отклонений забоев наклонных скважин от проекта приведены в табл. 2.5.

Таблица 2.4

	Диаз	метр, мм	Угол наклона ствола скважины, градус					
Назначение	долота	УБТ, турбобура	5	7	10	15	20	30
		Бурение	ротор	OM				
Стабилизация кривизны	394 295 216 190 161	245—203 229—203 178 146 146	16 11 9 8 5	14 10 8 7 4	13 9 7 7 4	12 8 6 6 3	11 7 5 5 3	10 7 5 5 3
Спад кривизны	394 295 216 190 161	245—203 229—203 178 146 146	29 22 17 16 12	26 21 16 15	24 20 14 14 10	22 18 13 13	20 16 12 12 8	18 15 11 11 7
		Бурение т	у рбобу	ром				
Стабилизация кривизны	394 295 216 190	324 * 240 240 195 172	13 16 10 6 5	12 15 9 5 4	11 13 8 5 4	10 12 7 4 3	9 11 7 4 3	8 10 6 3 3
Спад кривизны	394 295 216 190	324 * 240 240 195 172	25 27 21 14 13	23 25 19 13 12	21 23 17 12 11	19 20 16 11	18 19 15 10 9	16 17 14 9 8

^{*} Диаметр кожуха на турбобуре диаметром 240 мм.

Таблица 2.5

Геологические условия	Опорные, поиско-	Разведоч-	Эк	сп луат ацио глуби	нные скваж ной, м	сины
	вые сква- жины	ные сква- жины	<2000	2000 2500	2500→ 3000	300 0
Платформен- ные области	5 % H	10 % S, но не более	10 % S	12 % S	15 % S	20 % S
Складчатые области	5 % H	5 % <i>H</i> 10 % <i>S</i>	15 % S	20 % S	25 % S	30 % S

Примечание H = глубина скважины по вертикали, м; S = расстояние между вабоями скважин, м.

3. ПОРОДОРАЗРУШАЮЩИЙ ИНСТРУМЕНТ

3.1. ДОЛОТА ШАРОШЕЧНЫЕ

ГОСТ 20692—75, ТУ 26-02-874—80

Долота шарошечные выпускают следующих типов: M, M3, MC, MC3, C, C3, CT, T, T3, T K3, K, O K.

Долота различают по расположению и конструкции промывочных или продувочных каналов: Ц — центральная промывка, Γ — гидромониторная промывка, Π — центральная продувка, $\Pi\Gamma$ — боковая продувка.

Опоры шарошек изготовляют: В — на подшипниках с телами качения, Н — на одном подшипнике скольжения (остальные подшипники с телами качения), А — на двух и более подшипниках скольжения, У — маслонаполненные опоры с автоматической подачей смазки.

I, II, III — число шарошек долота.

НОМЕНКЛАТУРА ВЫПУСКАЕМЫХ ШАРОШЕЧНЫХ ДОЛОТ

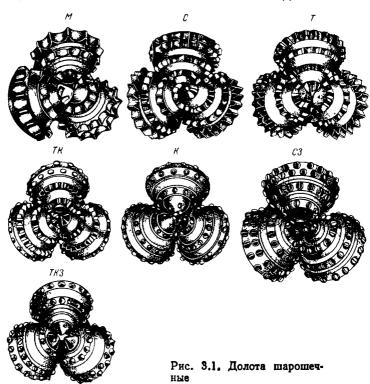


Таблица 3.1

Типоразмер	Резьба	Масса, кг	Допустимая нагрузка, кН
	Одношарошечные		
139,7 C3-H	3-88	17	180
161,0 C3-H	3-88	21	250
190,5 C3-H	3-117	37	300
215,9 C3-H	3-117	46	380
	Двушарошечн ые		
93 С-ЦВ	3-50	3,5	40
93 К-ЦВ	3-50	4	40
112 М-ГВ	3-63,5	6	50
132 М-ГВ	3-63,5	8	65
	Трехшарошеч ные		
98,4 С-ЦА	3-66	5	80
Т-ЦА	3-66	5	80
ОК-ЦА	3-66	5	80
120,6 С-ЦА	3-76	7,5	140
Т-ЦА	3-76	7	140
132 С-ЦВ	3-63,5	9	65
Т-ЦВ	3-63,5	8	65
К-ЦВ	3-63,5	10	65
139,7 С-ЦВ	3-88	12	100
Т-ЦВ	3-88	12	100
151 С-ЦВ	3-88	13	160
Т-ЦВ	3-88	12	160
К-ЦВ	3-88	14	160
161 С-ЦВ	3-88	18	160
Т-ЦВ	3-88	17	170
Т-ПВ	3-88	17	170
К-ПВ	3-88	18	170
190,5 M-ГВ	3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-117	32 30 33 28 30 32 31 35 33 27 30 32 29 33	200 170 190 200 200 240 200 190 190 270 210 200 250

Типоразмер	Резьба	Масса, кр	Допустимая нагрузка, кН
215,9 М-ГВ	3-117	38	250
М-ПГВ	3-117	38	250
М-ГАУ	3-117	41	170
МЗ-ГВ	3-117	40	250
МЗ-ГНУ	3-117	40	190
M3-ГАУ MC-ГВ MC-ГНУ MC-ГНУ MC3-ГНЧ MC3-ГНУ MC3-ГАУ С-ГВ С-ГН С3-ГВ С3-ГНУ С3-ГАУ Т-ПВ Т3-ПВ Т3-ПВ Т3-ПВ Т3-ГНУ Т3-ГНУ Т3-ГНУ С3-ГАУ С-ГНУ С3-ГНУ С3-ГНУ С3-ГНО С-ГНО С	3-117	40	190
	3-117	38	250
	3-117	37	250
	3-117	40	250
	3-117	40	380
	3-117	40	220
	3-117	36	220
	3-117	37	250
	3-117	38	250
	3-117	41	250
	3-117	41	250
	3-117	28	250
	3-117	33	240
	3-117	33	240
	3-117	38	240
	3-117	40	250
	3-117	30	380
	3-117	40	250
	3-117	30	250
244,5 МСЗ-ГНУ С-ЦВ С-ГНУ Т-ЦВ Т-ПВ К-ПВ ОК-ПВ	3-152 3-121 3-152 3-121 3-121 3-121 3-121	66 51 60 45 45 50	240 320 320 320 320 320 320 320
269,9 M-ГВ	3-152 3-152 3-152 3-152 3-152 3-152 3-152 3-152 3-152 3-152 3-152 3-152 3-152 3-152	68 72 77 77 67 66 73 76 76 72 62 63 77	350 240 270 270 350 350 350 270 270 270 380 350 350 350
295,3 м.ГВ	3-152	72	400
М-ЦВ	3-152	74	400

Типоразмер	Резьба	Масса, кг	Допустимая нагрузка, кН
295,3 МС-ГВ	3-152	77	400
МСЗ-ГНУ	3-152	92	300
С-ЦВ	3-152	74	400
С-ГВ	3-152	77	400
С-ГНУ	3-152	83	400
СЗ-ГВ	3-152	80	400
СЗ-ГНУ	3-152	89	300
СТ-ЦВ	3-152	75	400
Т-ЦВ	3-152	77	400
ТЗ-ЦВ	3-152	77	400
320 С-ГВ	3-152	84	450
Т-ПГВ	3-152	90	450
ТЗ-ПГВ	3-152	100	450
349,2 M-ILB	3-152	104	450
M-TB	3-152	114	450
C-ILB	3-152	103	450
C-TB	3-152	115	450
T-ILB	3-152	99	450
393,7 М-ЦВ	3-171	167	470
М-ГВ	3-171	164	470
С-ЦВ	3-171	176	470
С-ГВ	3-171	171	470
Т-ЦВ	3-171	123	470
444,5 С-ЦВ	3-171	252	500
490 С-ЦВ	3-171	316	500

долота фирмы «индустриалэкспортимпорт», румыния

Таблица 3.2

Диа- метр	Тип долота	Резьба	Масса, кр
190,5	S-J, S-LJ SM-J, SM-DJ, SM-LJ M-J, M-DJ, M-LJ MTA-J, MTA-DJ, MTA-LJ TA-J, TA-LJ TEA-KLJ	3-117	29—31
215,9	S, S-J, S-LJ SM, SM-J, SM-LJ, SM-D, SM-DJ, SM-DLJ M, M-J, M-LJ, M-DLJ MA-J, MA-LJ MTA, MTA-J, MTA-LJ TA, TA-J, TA-LJ, TA-Д	3-117	33,5—36,5
	TEA-KLJ		39

Окончание табл. 3.2

Диа- метр	Тип долота	Резьба	Масса, кр
295,3	S-J SM-J, M-J MA-J MTA, MTA-J	3-152	83—86
311,2	TA, TA-J S, S-J, S-LJ SM, SM-J, SM-DJ, SM-LJ, SM-DLJ M, M-J, M-LJ, M-DLJ MTA, MTA-J, MTA-LJ TA, TA-J, TA-LJ	3-152	87—97
393,7	TEA-KLJ S, S-J M, M-J MA-J MTA, MTA-J	3-177	102 198—207

Примечание. Обозначение долот: $S \longrightarrow для мягких пород, <math>SM \longrightarrow для$ средне-мягких пород, $M \longrightarrow для$ средних пород, $MT \longrightarrow для$ средне-твердых пород, $T \longrightarrow для$ твердых пород, $T \longrightarrow для$ сверхтвердых пород; $T \longrightarrow для$ абразивных пород; $T \longrightarrow для$ сверхтвердых пород; $T \longrightarrow для$ абразивных пород; $T \longrightarrow для$ система промывки, $T \longrightarrow д$ периферийные зубья шарошки усилены твердосплавными вставками; $T \longrightarrow д$ старушки армированы твердосплавными вставками.

ШАРОШЕЧНЫЕ ДОЛОТА БОЛЬШОГО ДИАМЕТРА

Таблица 3.3

Диаметр долота, мм	Код долота по IADC	Шифр долота фирм						
		«Хьюз Тул»	«Рид Тул»	«Секью- рити»	«Смит Тул»	«Цукамо- то Секи»	«Варел»	
660	1-1-1 1-2-1 1-3-1 2-1-1 5-1-5	R1 R3 —	Y11 — Y13 —	S3SJ S4TJ S84	DSJ DGJ 2JS	3SS 	L3A L3 — L2 —	
711	1-1-1 1-3-1 1-3-5		 	S3SJ S4TJ	DSJ DGJ DGHJ	<u> </u>		
762	2-3-1	_			_	_	LH2	
914	1-1-1			_		–	L3A	

МЕЖДУНАРОДНАЯ КЛАССИФИКАЦИЯ ШАРОШЕЧНЫХ ДОЛОТ (IADC)

Код классификации шарошечных долот состоит из трех цифр: серия — группа — конструктивное исполнение долота.

№ COOТВЕТСТВИЕ ТИПОВ ШАРОШЕЧНЫХ ДОЛОТ ПО КЛАССИФИКАЦИИ IADC

Таблица 3.4

Код IADC	CCCP	«Секьюрити» («Дрессер»)	«Смит Ин- тернейшнл»	«Хьюз Туля	«Рид Туля	«Цукамото Секи»	«Индустриалэкс- портимпорт»	«Вареля
111 114 115 116 121 123 124 125 126 127 131 133 134 135 136 137 211 213 214 215 216 217 221 223 231 233 234 235 236	M-(Ц, Г) В M-ГН M-ГАУ MC-ГВ MC-ГН MC-ГНУ C-(Ц, Г) В C-ГН C-ГНУ — CT-ЦВ CT-ГН	S3S (J) S33S S33SG S33SF S33 S33G S33F S4T S44 S44G S44F S44GF M4N M44NG M44NG M44NG M44NG M44NG M44NGF DM DMM M44LF	DS, DL SDS FDS FDS DT DTT SDT FDT FDT DG DGT SDGH FDG FDGH FV2 V2H SV SVH FV FVH FV FVH T2H ST2 +-	R1 X3A — ATJ1 R2 X3 — X3 — P3 ODG X1G XDG J3 JD3 R4 — XV XDV J4 JD4 DR5 — — —	Y11 S11 S11G HP11 Y12 — HP12 — HP12 — Y13T — S13 S13G HP13G HP13G Y21 — S21 S21G HP21 HP21G HP21G Y22R — — — —	3SS 3SS-Z ———————————————————————————————————	S (J) S-LJ S-GJ S-LJ S-GJ S-LJ S-GJ S-GJ SM-D (J) SM-DLJ SM-DLJ SMGJ SM-DGJ M (J) M-LJ M-DLJ M-GJ MA (J) MA-D (J) MTA-DJ MTA-LJ MTA-LJ MTA-GJ	L3A L114 L115 L116 L3 L124 L125 L126 L126 L134 L135 L136 L134 L135 L136 L136 L2 L2 L214 L215 L216 L216 L214 L215 L216 L216 L216 L214 L215 L216 L216 L235 L236
237	l —		-		_	_	MTA-DGJ	-

311 313	т-цв	Н7	L4 L4H	DR7	Y31	3HS 3HST	=	L1
314 315 316	_ Т-ГНУ	H77			S31G	3HS-Z 3HST-Z 3HS-K	<u>-</u>	L314 L315 L316
317	'		_	_	HP31G	знѕт-қ		_
321	_	_	_	R8	_	3H 3HT	TA (J) TA-D	LH1
323 324 325	_			_		3H- Z	TA-LJ	_
325 326	_		_ 	_		3HT-Z	TA-GJ	_
327	_		_		_		TA-DGJ	_
341	—		-		_	3HRJ 3HRT	<u>-</u>	<u> </u>
343 344	_		_		_	3HR-Z 3HRT-Z	_	_
345 346	_	_	<u>-</u>	_	_	3HRT-Z 3HR-K	_	_
347	_	_	_	_		3HRT-K	_	<u> </u>
417		_	<u> </u>	ATJ-05	_			-
427		S81F	\	_				
431 435	мз-гв	S82	_	X11			_	V435
437	М3-ГНУ, М3-ГАУ	S82F	F1	ATJ-11S	HP43A			V437
445 447	<u> </u>	<u> </u>	15JS F15			~		
515 517	МС3-ГН МС3-ГНУ, МС3-ГАУ	S84 S84F	2JS AI, F2	X22 ATJ-22S	S51A HP51A	Z 20 K20	S-KGJ	V515 V517
525 527	_	 S85 F	F27	 ATJ-22C	S52A HP52		-	V525 V527C
535 537		S86 S86F	3JS F3	X33 ATJ-33	S53A HP53A	Z30 K30	M-KLJ M-KGJ	V535C V537C
25		<u> </u>						

В Продолжение табл. 3.4

Код IADC	СССР	«Секьюрити» («Дрессер»)	«Смит Ин- тернейшнл»	«Хьюз Тул»	≪Рид Тул≋	«Цукамото Секиж	«Индустриалэкс- портимпорт»	«Вареля
545 547		S88 S88F	 F37		 HP54	=	_	 V547
611 615 617	С3-ГВ С3-Н С3-ГНУ, С3-ГАУ	M84 M84F	4JS F4, F45	X44 ATJ-44A	— HP61	Z40 K40	- - -	V615C V617C
625 627	_	M88T M88TF	5JS F5	 ATJ-44C , ATJ-55R	S62 HP62 A	Z50 K50	MA-KGJ	V625 V627C
635 637		M89F	47JS F47, F57	 ATJ-55A	— HP63	Z60 K60	MTA-KLJ MTA-KGJ	-
647	_	M90F	_	_	_	_	—	_
721 723 725 727	Т3-ЦВ Т3-ГН Т3-ГНУ, Т3-ГАУ	-	— — — F6	 	1111	111	TEA-KJ TEA-KLJ TEA-KGJ	
735 737	_	H87F	_ F7	 ATJ-77	— НР73	Z7 0 K70	1 1	V735 V737
741	ТҚ3-ЦВ	-			_		_	
745 747	ТКЗ-ГН	H88 H88F	_		_	Z80 K80	_	_
811 817	Қ-ГНУ Қ-ГНУ	— H99F	_		_	-	<u> </u>	_
835 837		H100 H100F	<u> </u>	ATJ-99A	— НР8 3	Z 90 K90	<u>–</u>	

3.2. НЕКОТОРЫЕ ПРИЧИНЫ АНОМАЛЬНОГО ИЗНОСА ШАРОШЕЧНЫХ ДОЛОТ СО ВСТАВНЫМИ ЗУБКАМИ

Таблица 3.5

Состояние отработан- ного долота	Воэможные причины аномального износа
Большое число сло- манных зубков	Неправильный выбор долога Неправильная приработка долота Чрезмерно высокая частота вращения Чрезмерно большая нагрузка на долото
Большое число потерянных зубков	Работа по металлу Чрезмерно большая нагрузка на долото Чрезмерно большая интенсивность промывки Слишком продолжительное время механического бурения
Значительный износ по диаметру	Чрезмерно высокая частота вращения Слишком продолжительное время механического бурения Сдавливание шарошек в результате спуска в ствол
Эрозия тела шарошки	уменьшенного диаметра Чрезмерный расход промывочной жидкости Большое содержание твердой фазы в промывочной жидкости Чрезмерно большая нагрузка на долото Долото предназначено для более твердых пород
Чрезмерный износ опор	Чрезмерно высокая частота вращения Чрезмерно большая нагрузка на долото Слишком продолжительное время механического бурения Чрезмерно большое содержание песка в промывочной жидкости Отсутствие стабилизаторов над долотом и между УБТ

Серии 1—3 включают шарошечные долота с фрезерованным зубом. Серии 4—8 — долота с твердосплавным вооружением. Каждая серия делится на четыре группы. Серии отличаются друг от друга категорией разбуриваемых пород:

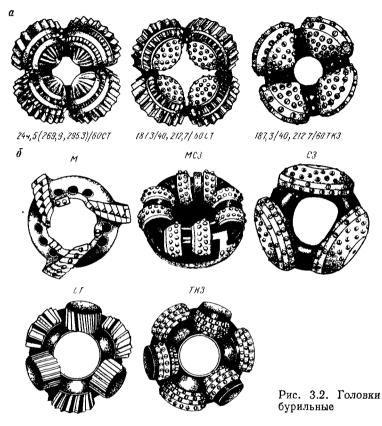
- 1 мягкие пластичные породы с прослоями пород средней крепости;
- 2 пластичные породы средней крепости с прослоями твердых пластичных неабразивных пород;
 - 3 твердые породы средней абразивности;
 - 4 очень мягкие, но хрупкие породы с большой буримостью;
 - 5 хрупкие мягкие и средней твердости породы;
- 6 хрупкие среднеабразивные породы средней твердости и твердые;
 - 7 абразивные твердые породы;
 - 8 очень твердые абразивные породы.

По конструктивному исполнению долота подразделяются:

- 1 долота с негерметизированной роликовой опорой, с центральной или гидромониторной промывкой;
 - 2 долота для бурения с продувкой воздухом;
- 3 долота с негерметизированной роликовой опорой, с центральной или гидромониторной промывкой, тыльная сторона шарошки армирована твердым сплавом;
- 4 долота с одной опорой скольжения, гидромониторная промывка;
- 5 то же, что и 4, но тыльная сторона шарошки армирована твердым сплавом;
- 6 долота с герметизированной опорой скольжения и гидромониторной промывкой;
- 7 то же, что и 6, но тыльная сторона шарошки армирована твердым сплавом.

з.з. КОДИРОВАНИЕ ИЗНОСА ШАРОШЕЧНЫХ ДОЛОТ

РД 39-2-51-78


- В Износ вооружения (хотя бы одного венца):
 - В1 уменьшение высоты зубьев на 0,25;
 - В2 то же, на 0,50;
 - В3 то же, на 0,75;
 - В4 то же, на 1,00 (полностью).
- С наличие скола зубьев, выпадения или скола твердосплавных зубков; их число (в %) записывается в скобках.
- П износ опоры (хотя бы одной шарошки):
 - $\Pi 1$ радиальный люфт шарошки относительно оси цапфы для долот диаметром менее 216 мм 0—2 мм, более 216 мм 0—4 мм;
 - П2 то же, для долот диаметром менее 216 мм 2—5 мм, более 216 4—8 мм;
 - П3 то же, для долот диаметром менее 216 мм более 5 мм, свыше 216 мм более 8 мм; «заедание» шарошки при вращении;
 - П4 разрушение тел качения или их выпадение; возникновение трещин и «лысок» на шарошках.
- К заклинивание шарошек, их число указывается в скобках.
 А аварийный износ:
 - АВ поломка и оставление вершины шарошки;
 - АШ поломка и оставление шарошки;
 - АС поломка и оставление лапы.

Число оставленных вершин, шарошек или лап указывается в скобках.

Д — уменьшение диаметра долота (в мм).

3.4. ГОЛОВКИ БУРИЛЬНЫЕ

ГОСТ 21210-75, ОСТ 39-079-79

Типы выпускаемых бурильных головок: М, МСЗ, СЗ, СТ, ТЗ, ТКЗ. Обозначение бурильных головок: К — для керноприемных устройств без съемного керноприемника, КС — для керноприемных устройств со съемным керноприемником.

Резьба у бурильных головок типа: К — муфта, КС — ниппель. Номенклатура выпускаемых бурильных головок приведена в табл. 3.6.

Таблица 3.6

Типоразмер	Резьба	Масса, кг	Допустимая нагрузка, кН
KC-187,3/40 CT	3-147	29	120
KC-187,3/40 TK3	3-147	31	130

KTCH-C3

30

Типоразмер	Резьба	Масса, кр	Допустимая нагрузка, кН
KC-212,7/60 CT KC-212,7/60 TK3 KC-212,7/60 TK3-HY K-139,7/52 MC3 K-139,7/52 TK3 K-158,7/67 TK3 K-187,3/80 M K-187,3/80 CT K-187,3/80 CT K-187,3/80 TK3 K-212,7/80 M K-212,7/80 M K-212,7/80 MC3 K-212,7/80 CT K-212,7/80 TK3 K-212,7/80 TK3 K-212,7/80 TK3 K-212,7/80 TK3 K-212,7/80 TK3	3-161 3-161 3-161 3-110 3-110 3-133 3-150 3-150 3-150 3-150 3-150 3-150 3-150 3-150 3-150	34 36 36 14 16 18 — 29 33 33 — 35 25 39 40 40	140 150 150 40 70 80 — 120 110 120 — 160 100 130 140

3.5. ДОЛОТА И ГОЛОВКИ БУРИЛЬНЫЕ, АЛМАЗНЫЕ И ОСНАЩЕННЫЕ СВЕРХТВЕРДЫМИ КОМПОЗИЦИОННЫМИ МАТЕРИАЛАМИ

ГОСТ 26474—85, ОСТ 39-026—76, ТУ 26-02-691—86

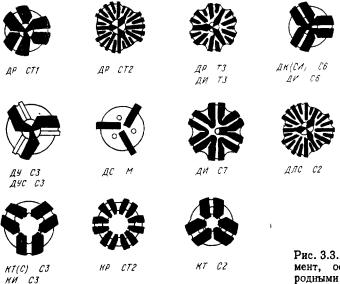


Рис. 3.3. Буровой инструмент, оснащенный природными или синтетическими алмазами

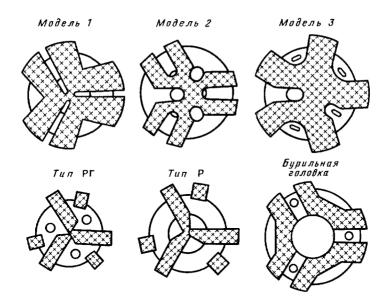


Рис. 3.4. Буровой инструмент, армированный сплавом славутич

Таблица 3.7

	Диаметр	, MM			
Шифр	наруж- ный	керна	Вы- сота, мм	Macca, kr	Резьба ниппельная
ДК 138,1 C6 ДР 141,3 Т3 ДК 149,4 C6 ДР 163,5 Т3 ДК (ДКС, ДКСИ) 188,9 C6 ДЛС 188,9 C2 ДИ 188,9 С6 ДИ (ДР) 188,9 Т3 ИСМ 188,9 С5 ИСМ 188,9 МС1 ДК (ДКС, ДКСИ) 214,3 С6 ДЛС 214,3 С2 ДИ 214,3 С6 ДИ (ДР) 214,3 Т3 ИСМ 214,3 С3 ДКС 267,5 С6 ДКС 292,9 С6 ИСМ 292,9 С2 ИСМ 292,9 МС2 КТ (КТСИ) 138,1/52 С3	138,1 141,3 149,4 163,5 188,9 188,9 188,9 188,9 1214,3 214,3 214,3 214,3 214,3 214,3 214,3 214,3 214,3 214,3 214,3		265 360 265 360 417 417 417 417 415 438 432 438 432 470 480 500 475 475 250		3-88 3-88 3-88 3-88 3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-117 3-152 3-152 3-152 3-152 3-152 3-151

<u> </u>	ерна 67	Вы- сота, мм	Macca,	Резьба ниппельная
5 6	67	040		
	o, i	240		3-133 *
	80	320] —	3-150 *
		320	-	3-150 *
9 4	40	415	-	3-147
3 8	80	330	—	3-150 *
3 8	80	330		3-150 *
	80	265	41	3-150 *
	3 3	80 40 8 80 8 80	9 80 320 9 40 415 8 80 330 8 80 330	80 320 — 9 40 415 — 8 80 330 — 8 80 330 —

Примечания. 1. Первая буква: Д — долото, К — бурильная головка. 2. Модификации: однослойные — Л (лопастные), Р (радкальные), Т (ступенчатые), К (ступенчатые с торовидными выступами); импрегнированные — И. 3. Синтетические алмазы — С. 4. Звездочкой обозначена муфтовая резьба.

3.6. РЕНТАБЕЛЬНАЯ ОТРАБОТКА АЛМАЗНЫХ ДОЛОТ

Для прогнозирования или предварительного определения рентабельности бурения алмазным долотом необходимо предварительно построить кривые «нулевой рентабельности» для данного 500-м интервала, задаваясь произвольно стойкостью шарошечного долота и отношением механических скоростей бурения алмазным и шарошечным долотами ($v_a/v_m \ll 1$,0). Кривые строятся в координатах $v_a/v_m - l_a/l_m$ по формуле

$$\frac{l_{\rm a}}{l_{\rm m}} = \frac{C_{\rm a} + q(1+k) t_{\rm cmo}}{C_{\rm m} + q(1+k) t_{\rm cmo} - q(1+k) t_{\rm m} \left(\frac{v_{\rm m}}{v_{\rm a}} - 1\right)},$$

где $l_{\rm a}$ — минимальная экономически целесообразная проходка алмазным долотом, м; $l_{\rm m}$ — средняя проходка шарошечным долотом в данном интервале, м; $C_{\rm a}$, $C_{\rm m}$ — стоимость алмазного и шарошечного долот, руб; q — сметная стоимость 1 ч работы буровой установки по затратам, зависящим от времени, руб; k — коэффициент организации ведения работ,

$$k = \frac{t_{\text{BCII}}}{t_{\text{GVD}} + t_{\text{CIIO}}} \cong 0.3;$$

 $t_{\rm cno}$ — затраты времени на один спуск-подъем, ч; $t_{\rm m}$ — стойкость шарошечного долота, ч; $v_{\rm m}$, $v_{\rm a}$ — средние механические скорости бурения шарошечным и алмазным долотами в течение рейса, м/ч; $t_{\rm Bon}$ — затраты времени на вспомогательные работы, отнесенные к одному рейсу, ч; $t_{\rm бур}$ — время механического бурения, ч.

Анализ показал, что коэффициент организации ведения работ зависит не от типа долота и способа бурения, а от организации работ на данном предприятии и района ведения работ. Чем выше организация работ (k=0), тем больше должна быть минимальная проходка на алмазное долото.

После первых 2—3 ч бурения алмазным долотом, зная на основании анализа данных отработки шарошечных долот в этом интервале, можно определить с достаточной точностью возможность отработки алмазного долота с получением экономического эффекта, т. е. установить минимальную проходку за рейс. Если отработка алмазного долота производится несколькими рейсами, значительного экономического эффекта достигнуто не будет. В табл. 3.8 приведена стойкость шарошечного долота, при которой нельзя даже теоретически рентабельно отработать алмазное долото (расчет произведен из условия: $C_{\rm a}=2800\pm200$ руб., $C_{\rm m}=100\pm20$ руб., $q=45\pm5$ руб., k=0,3).

минимальная стойкость шарошечного долота

Таблица 3.8

Соотношение меха-	Интервалы бурения, м							
нических скоростей бурения алмазным и шарошечным долотами	2000→ 2500	2500→ 3000	3000→ 3500	3500→ 4000	4000→ 4500	4500 5000		
0,9	65	88	_	_				
0,8	30	40	45	55	_	_		
0,7	17	23	26	32	38	42		
0,6	11	15	17	20	24	27		
0,5	7	10	11	14	16	18		
0,4	5	6	7	9	11	12		
0,3	3	4	5	6	7	8		

Примечание. Минимальная стойкость в ч.

ГАРАНТИРОВАННАЯ ПРОХОДКА НА АЛМАЗНЫЕ ДОЛОТА

ТУ 48-19-177---84

Таблица 3.9

Интервал бурения,	Породы средней	Твердые породы		
М	твердости, абра- вивные	малоабразивные	абразивные	
3000—3500	120	130	60	
35004000	100	120	50	
4000—4500	70	100	40	
4500—5000	60	80	35	
>5000	50	60	30	

2 3akas 862

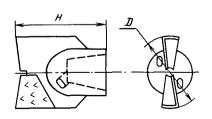
ОБЛАСТЬ ПРИМЕНЕНИЯ АЛМАЗНЫХ ДОЛОТ

Таблица 3.10

Шифр	Твердость пород, МПа	Группа алмазов
M2	500	XXXIV 6, XXXIV 6-1
M6, C2	500—1000	XXXIV 6
C3, CT1	1000—1500	XV 6, XXXIV 6
C6, CT2	1500—2000	XV 6, XXXIV 6

- Характеристика алмазов подгруппы б:

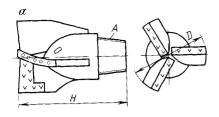
XV б — целые кристаллы различных форм и их обломки, кристаллы со сколами до незначительного искажения;


XXXIV б — овализованные алмазы, степень овализации средняя (более низкосортные, чем алмазы XV группы).

Допускаемые дефекты: незначительные (XV б-1, XXXIV б), небольшие (XV б-2, XXXIV б-1), большие (XV б-3, XXXIV б-2).

РАЗМЕРЫ АЛМАЗНЫХ ЗЕРЕН

Таблица 3.11


Масса, кар	Число алмазов, шт/кар	Диаметр зерна, мм	Масса, кар	Число алмазов, шт/кар	Диаметр зерна, мм
0,006—0,008	150—120	1,08—1,10	0,050—0,080	20—12	1,80—2,15
0,008—0,010	120—90	1,10—1,17	0,08—0,12	12—8	2,15—2,40
0,010—0,017	90—60	1,17—1,25	0,12—0,20	8—5	2,40—2,80
0,017—0,025	60—40	1,25—1,40	0,20—0,25	5—4	2,80—3,10
0,025—0,030	40—30	1,40—1,55	0,25—0,34	4—3	3,10—3,30
0,030—0,050	30—20	1,55—1,80	0,34—0,50	3—2	3,30—3,50

3.7. ДОЛОТА ЛОПАСТНЫЕ

OCT 26-02-1282—75, OCT 39-110—80, TY 26-16-151—83, TY 26-16-193—85, TY 41-01-457—82, TY 41-01-473—82

Рис. 3.5. Долото двухлопастное 34

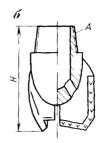


Рис. 3.6. Долото трехлопастное

Таблица 3.12

					Допуск	аемые		
Шнфр	Д, мм Н, мм	Macca, KF	Резьба	нагрузка, кН	момент, Н·м			
	Двухл	опастные	долота (ри	rc. 3.5)				
2Л-93,0 M 2Л-97,0 M 2Л-98,4 M 2Л-112,0 M 2Л-118,0 M 2Л-132,0 M 3ДР-132 M 6ДР-132 MC 2Л-139,7 M 2Л-146,0 M 2Л-161,0 M 2Л-161,0 M	93,0 97,0 98,4 112,0 120,6 132,0 132,0 132,0 139,7 146,0 151,0 165,1	175 175 175 175 175 175 175 150 150 190 190 190	2,3 2,4 2,4 2,6 2,7 2,7 2,8 4,0 4,5 4,1 4,2 4,4 4,4	3-50 3-50 3-50 3-50 3-50 3-50 3-50 3-50	20 20 20 30 30 35 40 — 45 45 50 55 55	220 220 220 380 420 450 540 — — 680 720 880 980 1 020		
	Трехлопастные долота (рис.3.6, а)							
3JI-120,6 3JI-132,0 3JI-139,7 3JI-146,0 3JI-151,0 3JI-161,0 3JI-165,1 3JI-171,4 3JI-187,3	120,6 132,0 139,7 146,0 151,0 161,0 165,1 171,4 187,3	240 260 260 260 260 260 260 260 260 280	8,0 10,0 10,0 11,0 11,0 12,0 12,0 12,0 15,0	3-76 3-88 3-88 3-88 3-88 3-88 3-88 3-88 3-8	50 55 60 80 80 85 90 90	600 720 840 1 170 1 200 1 350 1 500 1 500 1 800		

3JI (Г)-190,5 190,5 320 25,0 3-117 1 3JI (Г)-200,0 200,0 320 27,0 3-117 1 3JI (Г)-212,7 212,7 320 27,0 3-117 1		Допускаемые	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	узка,	момент, Н·м	
3Л (Г)-222,3 222,3 320 27,0 3-117 1 3Л (Г)-242,9 242,9 320 33,0 3-121 1 3Л (Г)-244,5 244,5 320 33,0 3-121 1 3Л (Г)-250,8 250,8 320 33,0 3-121 1 3Л (Г)-269,9 269,9 356 35,0 3-152 1 3Л (Г)-295,3 295,3 420 61,0 3-152 2 3Л (Г)-311,1 311,1 420 61,0 3-152 2 3Л (Г)-320,0 320,0 420 61,0 3-152 2 3Л (Г)-349,2 349,2 420 63,0 3-152 2	80 80 80 80 80 80 80 80 80 80	2 300 2 600 2 750 2 800 3 100 3 900 4 000 4 600 6 500 7 100 7 500 8 700 11 600	

Трехлопастные, истирающе-режущего типа долота (рис. 3.6, 6)

49-139,7 MC	1 139.7	260	l 9.0	1 3-88	1 50	l
3ИРГ-190,5 С	190,5	320	25,0	3-117	180	3 800
3 ИРГ-215,9 С	215,9	320	27,0	3-117	220	4 700
	1					1

Примечания. I. Трехлопастные долота выпускаются с гидромониторными насадками (диаметры долот 190,5 мм и более) и без них. 2. Типы трехлопастных долот — М и МС.

3.8. РАСШИРИТЕЛИ

РАСШИРИТЕЛИ РАЗДВИЖНЫЕ

OCT 39-167-84

Таблица 3.13

Шифр	пилотного долота	расширения	в транспорт- ном положе- нии	Резьба	
PPA-190,5/270 PPA-215,9/320 PPA-269,9/395 PPA-295,3/510 PPA-393,7/660 PPA-444,5/710 PPA-444,5/915 PPA-490,0/815 PPA-490,0/1070	190,5 215,9 269,9 295,3 393,7 444,5 444,5 490,0	270 320 395 510 660 710 915 815	187 212 265 290 385 435 550 480 650	3-117 3-117 3-152 3-152 3-177 3-177 3-177 3-201 3-201	

Примечания. І. Расширители промышленностью серийно еще не выпускаются. 2. Резьба — верхняя ниппельная, нижняя муфтовая.

РАСШИРИТЕЛИ ЛОПАСТНЫЕ

ТУ 26-16-150-83

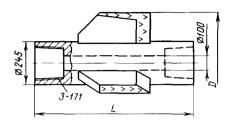


Рис. 3.7. Расширитель лопастной

Шифр					РЛПЗ-444,5/295,3	РЛПЗ-590/444,5	РЛПЗ-690/444,5
D, MM						590,0	690,0
L, mm					770	950	950
Macca,	KI	7			150	200	225

Примечания. 1. Типы расширителей — М и МС; 2. Гарантия при бурении ротором 750м или 75 ч. 3. Допустимые нагрузки 320 кН и момент 14 кН-м.

РАСШИРИТЕЛИ ШАРОШЕЧНЫЕ ФИРМЫ «ЭЙ-ЗЕД»

Рис. 3.8. Расширитель шарошечный раздвигающийся

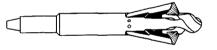


Таблица 3.14

		Диаметр,	мм	Шифр	Macca.	Резьба
Шифр	корпуса	скважины	расширения	шарошечных лап	K.P	ниппель- ная
DUR-9	212,7	244,5	330—432	DUR-9-8	379	3-117
DUR-13	298,5	381,0	381—559	U-10-8	676	3-152
DUR-16	368,3	431,8	470—711	DUR-16-8	903	3-177
DUR-20	457,2	660,4	660—889	DUR-20-8	1860	3-177
DUR-21	482,6	660,4	660—914	DUR-21-8	1987	3-177
DUR-24	558,8	660,4	711—1067	DUR-21-8	2717	3-177
DUR-30	711,2	838,2	1016—1397	DUR-30-8	4990	Фланец
U-5	117,4	120,6	178—241	U-5-8	70	3-76
U-7	146,0	155,6	203—330	U-7-8	159	3-88
U-8	184,1	193,7	267—381	U-8-8	227	3-117
U-9	209,6	219,1	292—432	U-8-8	261	3-117
U-10	238,1	244,5	311—473	U-10-8	513	3-152
UM-13	298,5	311,1	375—610	UM-13-8	715	3-152
U-16	374,6	381,0	470—762	U-16-8	971	3-177
U-24	558,8	660,4	686—965	DUR-21-8	1760	3-177

Примечание. Тип DUR - для мягких пород, тип U - для любых.

Ж РАСШИРИТЕЛИ ШАРОШЕЧНЫЕ

КАТАЛОГИ ФИРМ

Таблица 3.15

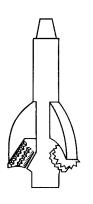


Рис. 3.9. Расширитель шарошечный

Пияз	«Секьюрити» Пиа-		«Дрилекс≇		«СМФ Интернейшнл»		«Смит Интернейшнл»		«Цукамото Секия		
метр сква- жины, мм	пи. сквах	метр лот- кины,	Шифр	Диаметр пилот- скважины, мм	Шифр	Диаметр пилот- скважины, мм	Шифр	Диаметр пилот- скважины, мм	Шифр	Диаметр пилот- сква- жины, мм	Шифр
508 559 610 660 711 762 813 864 914	33 39 -	05 37 37 94 45	B19J6 A22J6 B24J6 B26J6 ———————————————————————————————————	299 349 381 — — — — 445	2200 2400 2600 — — — 3600	324 324 356 445 — 457 508 559 660	H70 H80 H90 H100 — H110 H120 H130 H140	311 311 375 375 406 457 508 559 610	SDD SDD SDD GTA GTA GTA GTA		 TSK
Тип пор	од:	М, С,	CT, T	M, MC,	CT	М, С, Т	, қ	М, С, Т — дл М, С — для	ıя SDD GTA	М, Л	AC .

Примечания. 1. Диаметр корпуса расширителя 203-254 мм. 2. Резьба $7^{7/8}$ Reg или $8^{7/8}$ Reg.

3.9. УДЕЛЬНЫЙ МОМЕНТ ДОЛОТА

Удельный момент долота зависит от его типа, размера, качества изготовления, диапазона нагрузок и частоты вращения, плотности и пластичности разбуриваемой породы. В конце рейса удельный момент повышается в 2—3 раза по сравнению с первоначальным. С достаточной для практических расчетов точностью удельный момент шарошечных долот (в Н·м/кН) определяется по формулам

$$M_{yx} = Q + 1.2D$$
, $M_{yx} = bD^2 \frac{kn - A}{n \sqrt{n}}$,

где Q — опытный коэффициент, $H \cdot m/\kappa H$, $Q = 1 \div 2 H \cdot m/\kappa H$; D — диаметр долота, cm; b — коэффициент, зависящий от диаметра долота; k — коэффициент, зависящий от породы (для мягких пород k = 3,3, для средних — k = 3, для твердых — k = 2,5); n — частота вращения долота, об/мин; A — коэффициент, зависящий от частоты вращения долота, A = 200 при $n \geqslant 420$ об/мин и A = 150 при n < 420 об/мин.

Фактические значения удельного момента (в $H \cdot M/KH$) приведены в табл. 3.16.

Таблица 3.16

	Диаметр скважины, мм					
Район бурения	295,3	269,9	215,9	190,5		
Татария	7—12	_	_	4—9		
Азербайджан		6—16	6—8	_		
Туркмения	_	10—14	_	_		
Прикарпатье	10—14	_	_	_		
Куйбышевская область	_	10—12	6—9	_		

Для долот фрезерного типа удельный момент в 1,5—2 раза больше, чем для шарошечных долот того же диаметра. Для алмазных долот удельный момент составляет 6—8 и 7—12 Н·м/кН при диаметрах до 165,1 и 190,5—215,9 мм соответственно.

4. ЗАБОЙНЫЕ ДВИГАТЕЛИ И КЕРНОПРИЕМНЫЕ УСТРОЙСТВА

4.1. ПАРАМЕТРЫ ЗАБОЙНЫХ ДВИГАТЕЛЕЙ

FOCT 26673—85, TY 26-02-75—72, TY 26-02-574—74, TY 26-02-809—78, TY 26-02-823—78, TY 26-02-918—81, TY 39-989—86, TY 39-1118—86

Таблина 4.1

40

			Pa	бочий ре	жим		
фиШ ккэтатия д	Число ступе- ней	Расход жидкости, л/с	Частота враще- ния вала, об/мин	Момент на валу, кН·м	Перепад давле- ния, МПа	Длина, мм	Мас- са, ку
Т12РТ-240 3ТСШ1-240 А9ГТШ Т12М3Б-195 3ТСШ1-195 3ТСШ1-195 ЛАГТШ ТРМ-195 ТРМ-195 ТРМ-195 ТРМ-195 Т12М3Е-172 3ТСШ1-172 ТПС-172 А6Ш Д1-195 Д-85 Д1-54 Т02-240 Т02-195	104 315 210/199 105 330 318 228/111 97 97 106 336 426 212 — — 93 105	55 32 45 35 30 40 30 28 28 25 25 25 25 25 30	760 440 250 580 380 340 320 130 160 700 630 400 470 80 135 450 420 520	2,5 2,7 3,1 1,1 1,5 1,5 1,5 1,8 2,6 2,7 0,7 1,8 1,6 0,7 3,1 0,7	45599999495883959955 642384435423	8 210 23 225 23 290 8 060 25 700 24 950 14 370 7 490 25 400 26 250 7 675 3 240 2 230 10 170 10 110	2020 5975 6125 1440 4790 4325 4420 3110 2580 1057 3530 3325 2095 1350 106 27 2595 1850
КТД3-240 КТД4С-195 КТД4С-172	91 315 291	30 28 22	390 465 490	0,8 1,2 1,9	1,7 5,5 8,3	7 455 25 920 17 575	1750 5670 2320

Примечания. І. Энергетические параметры двигателей рассчитаны в ПО «Турбобур» на воде. 2. В знаменателе указано число решеток гидроторможения. 3. Угол перекоса переводника в турбинных отклонителях і "3 00". 4. Предслано допустимая температура 110 °С (кроме ТРМ-195Т). 5. Средний ресурс до списания турбобуров серии Т12 — 800 ч, 3ТСШ — 900 ч, Δ — 600 ч, винтовых двигателей — 400 ч, турбинных отклонителей — 400 ч.

Частота вращения вала турбобура типа ГТШ

$$n=\frac{n_{\mathrm{p}}z_{\mathrm{T}}}{1.1(z_{\mathrm{T}}+z_{\mathrm{p}})},$$

где $n_{\rm p}$ — частота вращения вала турбобура серии A при рабочем режиме, об/мин; $z_{\rm r}, z_{\rm p}$ — число ступеней турбины и решеток гидроторможения соответственно.

Основные зависимости для пересчета параметров турбобуров: $\Delta p \sim \rho_i \ M \sim \rho_i \ N \sim \rho_i \ n \sim Q; \ \Delta p \sim Q^2; \ M \sim Q^2; \ N \sim Q^3.$

1.2. ОСНАСТКА ЗАБОЙНЫХ ДВИГАТЕЛЕЙ

ззаимозаменяемые детали забойных двигателей

Габлица 4.2

Деталь		Тип двигателя	
Статор, ротор	T12M3E-172 3TCШ1-172	ЗТСШ1-195 А7ГТШ	Т12РТ-240 КТД3-240
		T02-195	А9ГТШ Т02-240
Средняя опора	Т12M3E-172 3ТСШ1-172	ЗТСШ1-195 (ТЛ) А7ГТШ Т02-195	T12PT-240 T02-240 ҚТД3-240
Втулка средней опоры	T12M3E-172 3TCШ1-172 A7ГТШ T02-195		T12PT-240 А9ГТШ Т02-240 КТД3-240
Нижняя опора	1	А7ГТШ Т02-195	А9ГТШ Т02-240
Втулка нижней опоры	 4	A7ГТШ T02-195	А9ГТШ Т02-240
Верхняя полумуфта	3ТСШ1-172 КТД4С-172	=	
Переводник вала	Т12М3Е-172 ЗТСШ1-172	3TCIII1-195 (TJI) A7ГТIII T02-195	A9ГТШ T02-240

ЦЕНТРАТОРЫ ЗАБОЙНОГО ДВИГАТЕЛЯ

ТУ 26-02-999-85

Таблица 4.3

	Для	на, мм			
Шифр	общая	лопасти	Масса, кр	Pecypo, T	
1-ЦД 212 МС	530	245	60	260	
1-ЦД 212 С	470	130	55	150	
1-ЦД 212 СТ	470	50	50	100	
1-ЦД 214 М	670	385	75	260	
1-ЦД 214 МС	530	245	63	260	
1-ЦД 214 С	470	130	55	150	
1-ЦД 214 СТ	470	50	50	100	
1-ЦД 214 Т	470	25	49	50	

Примечание. Присоединительные резьбы: муфта - 3-117, ниппель - РКТ-177.

4.3. БЫСТРОИЗНАШИВАЮЩИЕСЯ ДЕТАЛИ ЗАБОЙНЫХ ДВИГАТЕЛЕЙ

опора средняя

ΓΟCT 4671-76

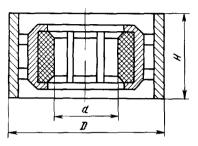


Рис. 4.1. Опора средняя

Таблица 4.4

Тип вабойного двигателя	Шифр опоры	<i>D</i> , мм	d, mm	<i>В</i> , мм
Т12РТ-240, А9ГТШ, Т02-240 ЗТСШ1-240 Т12М3Б-195 ЗТСШ1-195, А7ГТШ, Т02-195 Т12М3Е-172, ЗТСШ1-172 А6Ш КТД4С-172 КТД4С-195 КТД3-240	OC1-240 OC2-240 OC1-195/110 OC1-195/95 OC1-172/95 OC1-164/78 OC1-172/109 OC1-195/115 OC1A-240	205 149 165 165 148 142 148 165 205	130 135,5 110 95 95 78 109 115	100 80 100 100 100 100 80 100 100

опора нижняя

FOCT 4671-76

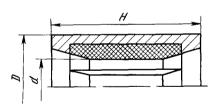


Рис. 4.2. Опора нижняя

Таблица 4.5

Тип вабойного двигателя	Шифр опоры	<i>D</i> , мм	d, мм	Н, мм
3TCШ1-240	OH-240/175	205	175	200
A9ГТШ, T02-240	OH-240/155	205	155	200
3TСШ1-195	OH-195/135	165	135	400
A7ГТШ, T02-195	OH-195/120	165	120	200
3TСШ1-172	OH-172/120	148	120	200

Продолжение табл. 4.5

Тип вабойного двигателя	Шифр опоры	D, мм	d , мм	Н, мм
А6Ш	OH-164/118	142	118	150
Д-85	OH-85	70	54	190
КТД4С-195	OH-195/144	165	144	200
КТД4С-172	OH-172/130	148	130	200

ниппель

ΓΟCT 4671--76

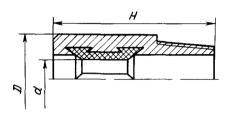


Рис. 4.3. Ниппель

Таблица 4.6

Тип вабойного двигателя	Шифр виппеля	D, MM	d, mm	H, mm
T12PT-240	H1-240	240	175	550
T12M3Б-195	H1-195	195	145	460
T12M3E-172	H1-172/130	172	130	410
KTД3-240	H1A-240	238	175	550

ВТУЛКА СРЕДНЕЙ ОПОРЫ

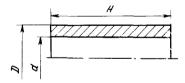


Рис. 4.4. Втулка средней опоры

Таблица 4.7

Тип забойного двигателя	Шифр втулки	<i>D</i> , мм	d, mm	<i>В</i> , мы
Т12РТ-240, А9ГТШ, Т02-240 3ТСШ1-240 Т12М3Б-195 3ТСШ1-195, А7ГТШ, Т02-195, Т12М3Е-172, ЗТСШ1-172 А6Ш КТД3-240 КТД4С-195 КТД4С-172	3TC55-240-1-13 3TCIII-240/02-034 TC5A-7 1/2"-1-8 T12M1-6 ½/8"-16 A6III-023 KTД3-240-013 KTД4C-195-214/60-015 KTД4M-172-190/40-008	130 135,5 110 95 78 130 115 109	110 110 80 80 65 110 105 97	100 80 100 100 100 100 100 80

подшипники в забойных двигателях

Таблица 4.8

Тип вабойного двигателя	Номер подшипника	Количество в секции	Число рядов	Секция
А9ГТШ	350722K	4	1	Турбинная, гидрогормоза
	128723	Ï	12	Шпиндельная
T02-240	128721K1	I	15	Турбинная
	128723	I	12	Отклонителя
А7ГТШ	350716K	5	1	Турбинная, гидрогормоза
	128721K1	1	15	Шпиндельная
T02-195	128718	1	15	Турбинная
	128721K1	1	15	Отклонителя
А6Ш	128713K1	1	10	Турбинная
	128718	1	15	Шпиндельная
Д1-195	Ур538922	I	15	>
Д-85	296708	I	4	*

4.4. РЕЗЬБЫ В ЗАБОЙНЫХ ДВИГАТЕЛЯХ

Таблица 4.9

Тип двигателя	К буриль- ным тру- бам На корпусе, еиппеле		На соеднен- тельном пере- воднике*	На валу	На долото
T12PT-240 T12M3Б-195 T12M3E-172 3TCIII1-240 3TCIII1-195 (ТЛ) 3TCIIII-172 A9ГТIII A7ГТIII A6III T02-240 T02-195 Д1-195 Д-85 Д-54 КТД3-240 КТД3-240 КТД4C-195 KТД4C-195	3-189 3-147 3-147 3-171 3-147 3-121 3-171 3-171 3-147 3-63,5 3-42 3-147 3-147 3-147 3-147	PKT-218 PKT-177 MK-156 PKT-218 PKT-177 MK-150 PKT-218 PKT-177 MK-150 PKT-218 PKT-177 TT72×5,08 Cn54×3,175 PKT-218 MK-177 MK-156	PKT-208 3-171 3-147 PKT-208 3-171 3-147 PKT-208 3-171 3-171 MK-76 HKB1-54Cn 3-161 MK-156	3-147 3-121 MK-110 3-147 3-147 3-102 3-133 3-117 3-102 3-133 3-117 3-63,5 — MK-150 3-171 3-147	3-171 3-117 3-117 3-152 3-117 3-152 3-117 3-152 3-117 3-166 3-42 3-171 3-161 3-147

Примечания. 1. Ввездочкой обозначена резьба соединений секций. 2. Резьба МК по РД $39 \cdot 2 \cdot 863 - 83$.

4.5. БУРЫ РЕАКТИВНО-ТУРБИННЫЕ

OCT 39-148-82

Таблица 4.10

	Днаме	тр, мм	Турбо	обуры	Macca.	Расход	Допусти- мая на-
Шифр	сква- Жины	долота	диаметр, мм	число	g,	жидкости, л/о	грузка, кН
							_
1 PTB-394	394	190,5	172	2	8,2	5056	80
1 PTB-445	445	215,9	195	2	10,8	60—70	105
1 PTB-490	490	215,9	195	2	12,0	60—70	120
I PTB-590	590	269,9	195	2	15,8	6070	155
1 PTE-640	640	295,3	195	2	17,0	60—70	165
11 PTB-760	760	349,2	240	2	12,0	100—110	70
11 PTB-920	920	444,5	240	2	13,0	100—110	75
11 PTB-1020	1020	490,0	240	2	13,2	100—110	80
I13 PTB-1260	1260	444,5	240	3	21,5	150—165	125
114 PTB-1260	1260	295,3	240	4	44,1	200—220	260
11 PTB-1300	1300	620,0	240	2	14,0	100—110	85
113 PTB-1300	1300	349,2	240	3	25,8	150—165	150
114 PTB-1520	1520	349,2	240	4	22,1	150—165	130
113 PTB-1560	1560	490,0	240	3	22,0	150—165	130
11 PTB-1560	1560	750,0	240	2	48,0	100—110	280
114 PTB-1720	1720	393,7	240	4	26,7	150—165	160
114 PTB-2080	2080	490,0	240	4	32,0	150—165	190
114 РТБ-2250	2250	490,0	240	4	26,6	150—165	160
114 РТБ-2600	2600	490,0	240	4	38,0	150—165	225
114 PTB-3000	3000	620,0	240	4	54,3	150—165	320
114 РТБ-3200	3200	620,0	240	4	57,9	200220	340
114 PTB-4000	4000	620,0	240	4	59,0	200—220	345
114 PTE-4600	4600	750,0	240	4	66,0	200—220	390
114 РТБ-5000	5000	750,0	240	4	62,0	200—220	365

Примечание. Длина буров I РТБ-590 и 1 РТБ-640 - 19,2 м, остальных 12 м.

🕏 4.6. УСТРОЙСТВА КЕРНОПРИЕМНЫЕ РОТОРНЫЕ

ТУ 26-02-163-75, ТУ 39-1103-86, ТУ 39-1171-87

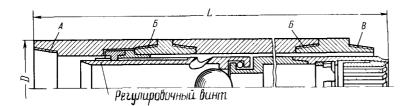


Рис. 4.5. Устройство керноприемное роторное

Таблица 4.11

III	Днаметр D, мм			Длина	Macca.	Диаметр	Резьба			Ресура,
Шифр	бурильной головки	керна	корпуса	L, мм	KP	шара, мм	A	Б	В	q
СКУ 203/100	269,9; 295,3	100	203	16 200	2500	50,8	8-171	3-189	3-189	700
СКУ-2 172/100 «Кембрий»	187,3; 212,7	100	172	16 130	1400	50,8	8-133	3-161	3-161	400
КД11-М 190/80 «Недра»	187,3; 212,7	80	164	16 190	1550	50,8	3-121	3-150	3-150	700
СКУ 138/67	158,7	67	138	15 940	1035	42,0	8-121	MK 125	3-133	400
СКУ 122/52	132,0; 139,7	52	122	18 190	810	31,8	B-88	MK 110	MK 110	400

Примечание. Резьба МК по РД 39-2-863-83.

КОМПОНОВКА КЕРНОРВАТЕЛЕЙ

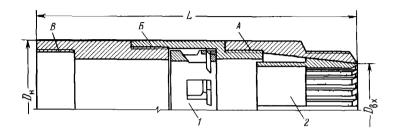


Рис. 4.6. Компоновка кернорвателя: 1. 2 — рычажковый и цанговый кернорватели

Таблица 4.12

Тип компоновки	Диаметр	Тип рычажкового	,			Резьба			
	керна, мм	кернорвателя	D _{BX} , MM	<i>D</i> ₂₃ , мм	L, MM	A	Б	В	
КЦР4-100	100	-	106	140	465	M100×3	СпМ134×3	M125×3	
КЦР4-80	80	Р18Л-80	85	110	421	M100×2	M105×2	СпM101×3	
КЦР3-80	80	PP3-80	85	113	437	M100×2	CnM108×2	СпM101×3	
КЦР4-67	67		72	97	362	M90×3	СпМ92×2	СпМ88×3	
К ЦП4-60	60	P19-60	64	83	225	М80×1,5Л	М80×1,5Л	М75×3Л	
КЦР4-52	52		56	80	352	M72×2	M72×2	M70×2	
КЦР4-40	40	P19-40	40	60	165	М55×1,5Л	М55×1,5Л	M52×3	
			<u> </u>				<u> </u>]	

5. БУРИЛЬНАЯ КОЛОННА

5.1. ТРУБЫ БУРИЛЬНЫЕ ВЕДУЩИЕ

ТРУБЫ БУРИЛЬНЫЕ ВЕДУЩИЕ КОВАНЫЕ

СТ СЭВ 1384-78, СТАНДАРТ Spec. 7 АНИ

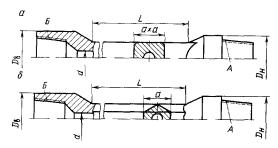


Рис. 5.1. Труба ведущая: $a - \kappa$ вадратная: $\delta - \omega$ стигранная

Таблица 5.1

Условное			Масса 1 м.	M;	уфта Б	Ни	ппель А
обозначение	a	4	KP .	D _B	Резьба	D _H	Резьба
	Kı	адратные	трубы (р	ис. 5.1,	a)		
(2 ^x / _s ") 63,5	63,5	38,1	33,0	196,9	3-152	85,7	3-73* 3-73*
(3") 76,2	76,2	44,4	29,2 41,0	146,0 196,9	3-117 3-152	85,7 104,8	3-86*
(3 ^{1/2} ") 88,9	88,9	57,2	36,0 49,0	146,0 196,9	3-117 3-152	104,8 120,7	3-86* 3-102*
(4 ^{1/4} ") 108,0	108,0	71,4 71,4**	45,4 68,0 68,0	146,0 196,9 196,9	3-117 3-152 3-152	120,7 152,5 161,9	3-102* 3-122* 3-133*
(5 ^{11/4} ") 133,4	133,4	68,8 82,5	65,0 102,9 102,9	146,0 196,9 196,9	3-117 3-152 3-152	155,6 177,8 177,8	3-133* 3-147 NC-56
(6") 152,4	152,4	82,5 82,5**	135,0	196,9 196,9	3-152 3-152	177,8 177,8	NC-56 3-152
		Шес	тигранные	трубы	(рис. 5.1	, δ)	
(3") 76,2	76,2	38,1	36,1	196,9 146,0	3-152 3-117	85,7 85,7	3-73* 3-73*
(3 ^{1/2} ") 88,9	88,9	44,4	32,4 47,2	196,9	3-152	104,8	3-86*
(4 ^{1/3} ") 108,0	108,0	57,2	43,8 75,2	146,0 196,9	3-117 3-152	104,8 120,7	3-86* 3-102*
(5 ^{1/4"}) 133,4	133,4	76,2 71,4** 82,5	68,8 81,1 82,5 79,2	146,0 196,9 196,9 196,9	3-117 3-152 3-152 3-152	120,7 152,4 152,4 155,6	3-102* 3-122* 3-122* 3-133*
(6") 152,4	152,4	71,4** 88,9	82,5 89,6 89,6	196,9 196,9 196,9	3-152 3-152 3-152	155,6 177,8 177,8	3-133* 3-147 NC-56

Примечания. І. Длина труб диаметром до 88,9 мм — 12 200 мм, диаметром 108 и более — 12 200 мм или 16 450 мм 2. Предел текучести материала трубы не менее 700 МПа. 3. Звездочкой обозначена резьба укороченного профиля, двумя звездочками — только по стандарту АНИ. 4. Размеры в мм.

трубы ведущие квадратного сечения

ТУ 14-3-755—78, ТУ 51-276—86

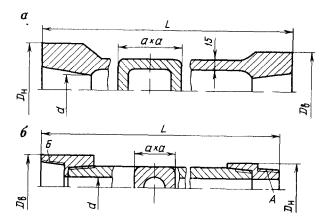


Рис. 5.2. Трубы ведущие квадратные

Примечание. Размеры в мм.

Таблица 5.2

таолица э.г											
				Macoa		Верж	Низ				
Шифр	а	đ	Длина В	Macca 1 m, KP	D _B	Резьба	D _H	Резьба			
Труба-щтанга квадратная (рис. 5.2, a)											
65×65	65	30	8 000	24,2	92		92	_			
80×80	80	33	8 000	31,4	102		102	_			
	Труб	ба веду	щая с кон	ическим п	ояском	(рис. 5.2,	6)				
ТВКП-112	112	74	13 500	69,8	146	3-121	146	3-121			
ТВКП-140	140	85	16 000	113,0	203	3-171	178	3-147			
ТВКП-155	155	100	16 000	131,0	203	3-171	203	3-171			
	1			I	1		1	I			

5.2. ТРУБЫ БУРИЛЬНЫЕ УТЯЖЕЛЕННЫЕ

CT C9B 1385-78

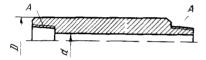


Рис. 5.3. Труба бурильная утя-

Таблица 5.3

Диаме	гр, мм		
наружный <i>D</i>	внутренний d	Масса 1 м, кг	Резьба А
79,4	31,7	32,7	NC-23
88.9	38,1	40,2	3-73*
104.8	50,3	52,1	3-86*
120,6	50,8	74,4	NC-35
, .	63,5	63,5	NC-35
127.0	57,2	78.9	3-102*
146,0	68,3	102,9	NC-44
•	76,2	95,8	3-122*
152,4	57,2	123,5	NC-44
· I	71,4	111,6	NC-44
158,8 i	57,2	135,4	NC-44
•	71,4	123,5	3-122*
165,1	57,2	147,3	3-122*
	71,4	135,4	3-122*
171,4	57,2	160,7	3-122*
· ·	76,2	146,1	3-133*
177,8	57,2	174,1	3-133*
177,8	71,4	163,7	3-133*
184,2	71,4	177,0	3-133*
196,8	71,4	206,8	NC-56
	90,4	189,2	3-152
203,2	71,4	223,2	NC-56
l	90,4	204,0	NC-61
209,6	71,4	238,0	3-152
228,6	71,4	290,1	NC-61
	90,4	273,2	3-177
241,3	76,2	321,4	3-177
	100,0	296,3	3-177
247,6	76,2	340,7	NC-70
	100,0	314,3	3-177
254,0	76,2	361,5	NC-70
·	100,0	336,9	NC-70
279,4	76,2	444,8	NC-77
Į.	100,0	418,0	NC-77

Примечания. 1. Длина труб 9150 мм. 2. Трубы выпускаются с проточкой под элеватор (тип Б) или под клинья (тип В). 3. Звездочкой обозначена резьба укороченного профиля.

ТРУБЫ БУРИЛЬНЫЕ УТЯЖЕЛЕННЫЕ С ПРОТОЧКОЙ ПОД ЭЛЕВАТОР

ТУ 14-3-835-79, ТУ 39-076-74, ТУ 51-774-77

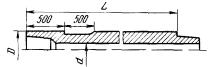
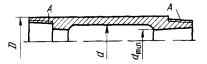


Рис. 5.4. Труба бурильная утяжеленная с проточкой под элеватор

Таблица 5.4


Шифр	D, mm	<i>d</i> , мм	Δ, мм	Масса 1 м, кр	Резьба	Марка сталя
УБТ 146 УБТ 178 УБТ 203 УБТ 219	146 178 203 219	74 90 100 112	8 000 12 000 12 000 8 000	97,6 145,4 193,0 225,0	3-121 3-147 3-171 3-171	д, к
УБТС 1-120 УБТС 1-133 УБТС 1-146 УБТС 1-178 УБТС 1-203 УБТС 1-229	120 133 146 178 203 229	64 64 68 80 80 90	6 500 6 500 6 500 6 500 6 500 6 500	63,5 84,0 103,0 156,0 215,0 273,0	3-101 3-108* 3-121 3-147 3-161 3-171	40ХН2МА или 38ХН3МФА
УБТС.2-120 УБТС.2-133 УБТС.2-146 УБТС.2-178 УБТС.2-203 УБТС.2-229	120 133 146 178 203 229	64 64 68 80 80 90	6 000 6 000 6 000 6 000 6 000 6 000	63,5 84,0 103,0 156,0 215,0 273,0	3-101 3-108* 3-121 3-147 3-161 3-171	40ХН2МА или 38ХН3МФА

Примечания. Г. УБТ поставляются без проточки под элеватор, УБТС — с проточкой. 2. Гарантия УБТС. 2 — 1500 ч роторного бурения. 3. Звездочкой обозначена резьба укороченного профиля.

ТРУБЫ БУРИЛЬНЫЕ УТЯЖЕЛЕННЫЕ

ТУ 41-01-305-78, ТУ 41-01-154-75

Рис. 5.5. Труба бурильная утяжеленная с высаженными концами

Таблица 5.5

Шифр	D, мм	d, mm	d _{min} , mm	Масса 1 м, кг	Резьба <i>А</i>	Гарантия, ч
УБТ-Р-73	73	35	28	25	3-50	3000
УБТ-Р-89	89	45	28	34	3-63,5	1500

Примечания. 1. Длина комплекта 81 м. 2. Длина трубы 4,5 м или 6 м.

номерные утяжеленные бурильные трубы

СТАНДАРТЫ SPEC. 7 АНИ И ФИРМЫ «ДРИЛКО»

Таблица 5.6

	Диамет	р, мм	Macca	Резьба		
Обозначение	наружный	внутрен- ний	1 м, кр	стандарт- ная	допустимая	
NC 23-31* NC 26-35 NC 26-35 NC 31-41 NC 35-47 NC 38-50 NC 40-55* NC 40-57* NC 44-60 NC 44-62 NC 46-62 NC 46-65 NC 46-65 NC 46-65 NC 46-67 NC 50-70 NC 50-70 NC 50-70 NC 56-77* NC 56-77* NC 56-77* NC 56-77 NC 56-80 NC 56-77 NC 56-77 NC 56-80 NC 56-77 NC 56-	79,4 88,9 104,8 120,6 127,0 139,7 146,0 152,4 158,7 158,7 165,1 171,4 177,8 177,8 184,4 190,5 196,8 196,8 203,2 203,2 209,5 215,9 228,6 241,3 254,0 279,4 285,7	31,7 38,1 50,8 57,1 57,1 57,1 57,1 57,1 71,4 57,1 71,4 57,1 71,4 71,4 71,4 71,4 71,4 71,4 71,4 7	32,7 40,2 51,6 69,7 79,3 100,2 111,3 122,9 111,6 134,7 123,6 148,1 136,4 161,5 149,4 174,9 187,5 207,0 202,4 222,7 218,8 238,7 235,1 255,0 290,2 285,7 322,9 361,6 445,0 467,3	NC 23 NC 26 NC 31 NC 35 NC 35 NC 40 NC 44 NC 44 NC 46 NC 50 NC 50 NC 50 NC 56 NC 56 NC 56 NC 56 NC 56 NC 56 NC 56 NC 70 NC 77 NC 77	23/ ₈ IF 27/ ₈ IF NC 38	

Примечания. Т. Конструкцию см. на рис. 5.3. 2. По стандарту фирмы «Дрилко» выпускаются спиральные УБГ, аналогичные приведенным выше. Число спиралей — три, направление правое, вес на 4 % меньше приведенного. 3. В обозначении УБТ первые две цифры — диаметр соединения в доймах с точностью до десятых долей, последующие две или три цифры — наружный диаметр в дюймах с точностью до десятых долей. 4. Длина труб диаметром 146 мм включительно — 9144 мм, труб большего диаметра — 9144 мм или 12 800 мм. 5. Типы УБТ: А — гладкие, В — с проточками под элеватор и клинья, С — с проточкой только под клинья. 6. Звездочкой обозначены трубы не по стандарту АНИ.

КВАДРАТНЫЕ УБТ

ФИРМЫ «ДРИЛКО» И «ИНДУСТРИАЛЭКСПОРТИМПОРТ»

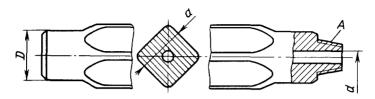


Рис. 5.6. Труба бурильная утяжеленная квадратная

Таблица 5.7

Диаметр	Размер	Сторона	Диам	етр, мм	Macca	Резьб	ба <i>А</i>
сква-	по диа- гонали, мм	квадра- та а, мм	кор- пуса <i>D</i>	вну- трен- ний d	тру- бы, кг	ļ	допустимая
120,6 142,9 144,5 155,6 158,7 165,1 168,3 171,4 187,3 190,5 200,0 212,7 215,9 219,1 222,2 228,6 244,5 250,8 269,9 279,4 295,3 311,1 349,2 381,0 393,7 444,5	119,1 141,3 142,9 154,0 157,2 163,5 166,7 188,9 188,9 198,4 211,1 214,3 217,5 220,6 227,0 242,9 249,2 268,3 277,8 293,4 309,6 309,6 309,6 344,5 347,7 379,4 392,1 442,9 442,9	95,2 114,3 — — 127,0 139,7 139,7 139,7 — — 165,1 — 177,8 177,8 177,8 203,2 203,2 228,6 228,6 228,6 254,0 — — 279,4 304,8 — 355,6 —	88,9 114,3 120,7 127,0 127,0 139,7 139,7 139,7 158,8 158,8 165,1 177,8 177,8 177,8 177,8 203,2 228,6 241,3 247,7 247,7 247,7 247,7 247,7 247,7 247,7 247,7	38,1 44,4,8 50,8 50,8 50,8 50,8 57,1 71,5 57,1 57,1 57,1 57,1 71,4 71,4 71,4 76,2 71,4 76,2 71,4 76,2 71,4 76,2 71,4 76,2	525 770 800 915 935 1090 1150 1170 1440 1350 1685 1760 1980 2020 2040 2570 2605 3140 3490 3865 3860 4640 5340 6260 6200 7420 7350	3-73* 3-86* NC 35 3-102* 3-108* 3-108* 3-108* NC 44 NC 44 NC 46 3-133* NC 50 3-133* 3-133* 3-133* 3-152 3-177 3-177 75/ ₈ H-90 NC 70 NC 70 75/ ₈ H-90 NC 70 75/ ₈ H-90 NC 70	MC 35 NC 35 NC 35 65/s H-90 65/s H-90 3-171 3-171 NC 70

Примечания. 1. Длина труб 9144 мм. 2. Фирма «Индустриалэкспортимпорт» не обусловливает размер стороны квадрата. 3. Калибрующая поверхность армирована твердым сплавом. 4. Тип резьб: муфта — муфта и муфта — ниппель. 5. Звездочкой обозначена резьба укороченного профиля.

РАЗМЕРЫ, ММ, ПРОТОЧЕК НА УБТ

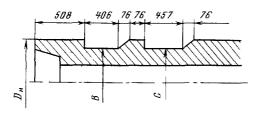


Рис. 5,7. Размеры проточен на УБТ

Таблица 5.8

Наружный	Диаметры п	роточек под	Наружный	Днаметры п	роточек под
диаметр УБТ <i>D</i> _н	элеватор 🛥 В	клинья ПКР — С	диаметр УБТ <i>D</i>	элеватор — В	клинья ПКР ⊶ С
104,8 120,7 146,0 152,4 158,7 165,1 171,4 177,8	93,7 107,9 130,2 136,5 142,9 149,2 152,4 158,7	95,2 111,1 133,3 139,7 146,0 152,4 158,7 165,1	184,1 190,5 196,8 203,2 228,6 241,3 247,6 254,0	165,I 171,4 177,8 184,1 206,4 219,1 225,4 231,8	171,4 177,8 184,1 190,5 215,9 228,6 234,9 241,3

5.3. ТРУБЫ БУРИЛЬНЫЕ

КЛАССИФИКАЦИЯ СТАЛЬНЫХ БУРИЛЬНЫХ ТРУБ (СБТ)

Таблица 5.9

		Класс	труб		
, Показатель	отечест	венных	варубежных		
	11	111	11	111	
Толщина стенки при износе, %, не ме-					
равномерном эксцентричном	80 65	65 55	80 65	62,5 55	
Площадь сечения тела трубы, %, не менее		_	80	37,5	
Продольные надрезы, оставщаяся тол-	80	65	80	62,5	
Поперечные надрезы, оставшаяся тол-	90	80	90	80	
щина стенки, %, не менее Длина поперечного надреза от длины окружности, %, не более	10	10	10	10	
				ļ	

НОМЕНКЛАТУРА ВЫПУСКАЕМЫХ ОТЕЧЕСТВЕННЫХ СБТ

Таблина 5.10

Диаметр	Толщина	Группа	Диаметр	Толщина	Группа
труб, мм	стенки, мм	прочности	труб, мм	стенки, мм	прочности
Трубы 42 50 63,5 73 89 114 140	5 5,0; 5,5 6,0; 6,5 7; 9 7; 9 8; 9; 10 9; 10; 11	рукции ТБВ Д, К Д, К Д, К Д, К, Е Д, К, Е Д, К, Е, Л Д, К, Е, Л	140	9; 10; 11; 12	грукции ТБВК Д, К, Е, Л вамками ТБПВ Д, К Д, К Д, Е Д, Е Д, Е

ТРУБЫ БУРИЛЬНЫЕ СТАЛЬНЫЕ ОТЕЧЕСТВЕННЫЕ

TOCT 631—75, TY 14-3-549—76, TY 14-3-577—77, TY 14-3-713—78, TY 14-3-754—78, TY 14-3-844—79, TY 14-3-973—80, TY 14-3-1002—81, TY 14-3-1187—83, TY 39-886—83, TY 26-02-518—73

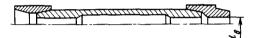


Рис. 5.8. Труба бурильная

Таблица 5.11

Днамет	гр, мм	Толщина		Вамон		Macca 1 m	
каружный	мини- мальный		Ten	Tan d _B , mm		o yvetom Bamka, kp	
	Tp	убы сборн	юй конструк	ции ТБВ	(рис. 5.8)		
42 50 63,5	22 28 40	5 5,5 6,5	3-42 3-50 3-63,5	22 28 40	3-42 3-50 3-63,5	4,7 6,3 8,8	
73	45 34	7 9 4	3H-95	32	3-76	12,9 15,6	
89	60 49	7 9	3H-108	38	3-88	16,0 19,5	
114	78 74 70	8 9 10	ЗШ-146	80	3-121	24,2 26,5 28,9	
140	101 100 91	9 10 11	ЗШ-178	101	3-147	33,7 36,8 39,5	

Диаме	гр, мм	Толщина		Вамок					
наружный	мини- мальный	стенки, мм	Тип	<i>d</i> _в , мм	Резьба	с учетом вамка, кр			
	Трубі	ы сборной	конструкции	ТБВК (сл	м. рис. 5.8)				
140	102 100 100 100 98	9 10 11 12 13,5	ЗШК-178	101	3-147	33,7 36,8 39,5 42,2 46,0			
	Тру	бы для эл	ектробурения	е высадк	ой внутрь				
127	92 92	9 10	391-155	_	3-133	30,3 33,0			
	Тру	бы для эл	ектробурения	е высадк	ой наружу				
114 140	94 120	10 10	391-155 391-185	_	3-133 3-161	29,9 38,3			
		Трубы с	приварными	вамками 7	ГБПВ				
50 60 89	39 50 54 45	5,5 5 9 11	3-50 3-50 — —	28 28 50 45	3-50 3-50 3-86 3-86	7,7 8,7 19,7 23,0			
114	92 92	8,6 10,9	3П-114	89	3-133	27,5 33,0			
127	104 101	9,2 12,7	ЗП-127	102	3-147	32,2 41,8			

Примечание. Длина труб нефтяного сортамента 12 м, геологоразведочного — 4,5 м.

периодичность дефектоскопии сбт на буровой

Таблица 5.12

Вид бурения	Забой скважины, м	Класс Фруб	Участки трубных резьб	Зона свар- ного шва труб ТБПВ
Турбинный	<2500 <2500 2500—3500	I, II III I, II	90 30 65	120 30 120
Роторный, турбинно- роторный	>3500 <2500 <2500 2500—3500 3500—4000 4000—5000 >5000	I, II III I, II I, II I I	45 60 30 45 30 30 20	90 60 30 60 45 45 45

Примечания. 1. Периодичность дефектоскопии в сут производительного времени проводки скважины. 2. При бурении в осложненных условиях (каверны, интенсивность искривления более 3° на 100 м и т. п.), а также при бурении особо ответственных скважин периодичность дефектоскопии может быть уметьшена в 1,5—2 раза. После ликвидации вварий (прихват, полет) дефектоскопия обязательна.

ПРОЧНОСТНАЯ ХАРАКТЕРИСТИКА ОТЕЧЕСТВЕННЫХ БУРИЛЬНЫХ ТРУБ І КЛАССА РАЗЛИЧНЫХ ГРУПП ПРОЧНОСТИ

Таблица 5.13

Диа- метр,	Толщина стенки,			ая наг екучести		Внут	реннее дав; текучес	ление до п ти, МПа	редела	C	Сминающее давление, МПа			
мм	мм	д	K	Е	л	Д	К	Е	л	Д	К	Е	л	
42 50 60 63,5	5 5,5 5 6	200 280 330 410	270 370 430 540		1111	77,7 71,8 54,4 61,7	102,1 94,3 71,4 81,0			73,5 66,7 56,9 55,4	96,0 87,3 74,8 72,1	 		
73 89	7 9 7 9	540 680 680 830	680 880 880 1120	780 980 980 1220		62,6 80,4 51,4 66,1	82,2 105,7 67,5 86,8	90,4 116,5 74,4 95,7		55,9 76,5 43,7 60,3	73,6 100,1 55,9 78,5	80,4 109,9 60,8 86,3	_ _ _	
114	8 9 10 10,9	980 1130 1220 1300	1320 1470 1610	1420 1610 1760 1900	1710 1910 2100 —	46,0 51,5 56,9 62,2	60,0 67,7 74,5 —	66,2 74,5 82,4 90,1	78,0 87,3 98,1	37,3 44,1 50,5 56,8	47,1 56,4 65,1	51,0 61,3 71,1 80,7	58,4 70,6 82,9	
127	9,2 12,7	1120 1700	_	1810 2230	2100 2900	46,1 65,3	_	66,7 94,5	78,5 112,0	37,2 67,0	_	52,0 97,1	59,3 112,3	
140	9 10 11 12	1370 1520 1670 1800	1810 2010 2160 2360	2010 2200 2400 2600	2350 2600 2840 3090	42,2 47,1 51,5 56,0	55,4 61,8 67,7 73,6	60,8 67,7 74,5 81,1	71,6 79,5 88,3 96,1	32,9 38,7 44,1 49,0	41,2 49,0 56,4 63,3	44,1 53,0 61,3 69,1	50,0 60,3 70,6 80,3	

Примечание При работе с клиновым вахватом допустимая растягивающая нагрузка может быть ниже приведенной.

ДОПУСТИМЫЙ ИЗНОС СТАЛЬНЫХ БУРИЛЬНЫХ ТРУБ II И III КЛАССОВ

Таблица 5.14

		11 1	класс	III K	III класо			
Диаметр Фрубы	Толщина стенки	Диаметр, не менее	Толщина стенки, не менее	Диаметр, не менее	Толщина стенки, не менее			
73	7	70,2	5,6	68,1	4,55			
	9	69,4	7,2	66,7	5,85			
89	7	86,2	5,6	84,1	4,55			
	9	85,4	7,2	82,7	5,85			
114	8	111,1	6,4	108,7	5,20			
	9	110,7	7,2	108,0	5,85			
	10	110,3	8,0	107,3	6,50			
127	9,2	123,4	7,4	120,8	6,10			
	12,7	122,6	10,5	119,6	9,00			
140	9	135,9	7,2	133,4	5,85			
	10	135,7	8,0	132,7	6,50			
	11	135,3	8,8	131,9	7,11			
	12	134,9	9,6	131,2	7, 75			

Примечание. Размеры в ки.

ПРЕДЕЛЬНЫЕ ВЕСА, кН, БУРИЛЬНЫХ КОЛОНН ПРИ ПОДВЕСКЕ ТРУБ I КЛАССА РАЗЛИЧНЫХ ГРУПП ПРОЧНОСТИ В КЛИНОВОМ ЗАХВАТЕ

Таблица 5.15

Диаметр	Толщина	Дл	ина кли	на 300 в	им	Для	Длина жлина 400 мм			
трубы, мм	стенки, мм	д	К	Е	л	д	К	· E	л	
89	7 9	590 740	770 970	850 1070	_	610 770	800 1010	880 1110	_	
114	8 9 10 10,9	830 930 1020 1100	1090 1220 1340 —	1200 1340 1480 1590	1420 1590 1750	870 970 1070 1150	1140 1280 1410	1260 1400 1550 1660	1480 1660 1830	
127	9,2 12,7	1020 1370	_	1480 1980	1740 2310	1070 1430	<u> </u>	1550 2050	1830 2400	
140	9 10 11 12	1110 1220 1340 1460	1460 1610 1760 1910	1600 1770 1930 2100	1890 2090 2290 2490	1170 1290 1410 1530	1540 1700 1860 2010	1690 1870 2040 2210	2000 2210 2410 2610	

РАСТЯГИВАЮЩИЕ НАГРУЗКИ, кН, ДО ПРЕДЕЛА ТЕКУЧЕСТИ МАТЕРИАЛА СТАЛЬНЫХ БУРИЛЬНЫХ ТРУБ II И III КЛАССОВ

Таблица 5.16

Диаметр	Толщина		II ĸ.	пасо		III класо			
трубы, мм	стенки, мм	д	К	Е	л	д	қ	E	л
73	7 9	420 520	560 680	620 760	=	340 420	440 560	490 610	_
89	7 9	510 660	680 880	760 970	_	380 530	490 690	540 760	
114	8 9 10 10,9	800 890 970 1040	1050 1170 1270 —	1160 1280 1390 1460	1370 1520 1650 —	630 700 760 820	810 910 1000	900 1010 1100 1190	1070 1190 1300
127	9,2 12,7	970 1270	_ _	1390 1790	1650 2120	760 1010	_	1100 1450	1300 1710
140	9 10 11 12	1090 1200 1320 1440	1430 1570 1730 1880	1570 1730 1910 2070	1860 2060 2260 2450	880 970 1060 1150	1160 1270 1380 1480	1270 1400 1520 1640	1500 1650 1800 1950

ЗАРУБЕЖНЫЕ БУРИЛЬНЫЕ ТРУБЫ

СТАНДАРТЫ 5A, 5AX, АНИ И ФИРМ «NKK», «SM», «TSK»

Таблица 5.17

		Труба	1			Замок			
Диа-	Толщина	Тип		_	Диаметр	, мм	Допусти-	Масса 1 м с учетом	
диа- метр, мм	стенки, мм	вы- садки	Марка стали	Тип резьбы	наруж- ный	внут- рен- ний	мый мо- мент, кН·м	замка, кр	
60,3	7,11	Н	E X, G	NC 26 NC 26	86 89*	44* 44*	9,2 9,2	10,4 10,5	
73,0	9,19	Н	E X, G S	NC 31 NC 31 NC 31	105 105 111*	54* 51* 41*	16,0 17,9 23,0	16,1 16,2 16,7	
88,9	6,45 9,35	H H	E E X G, S S E	NC 38 NC 38 NC 38 NC 38 NC 40 NC 31	121 121* 127* 127* 136 105	68* 68* 65* 62* 62 54	24,5 24,5 27,5 30,0 40,7 18,0	15,5 20,6 21,3 21,4 22,2 20,1	

		Труб	a			Замон		
Диа-	Толщина	Тип			Диаметр	, мм	Допусти-	Масса Ім с учетом
метр, мм	стенки, мм	вы- садки	Марка стали	Тип резьбы	наруж- ный	вну т - рен- ний	мый мо- мент, кН-м	замка, кр
88,9	11,40	Н	E X G S S	NC 38 NC 38 NC 38 NC 38 NC 40	127* 127* 127* 127 127 140	65* 62* 54* 62 57	27,5 30,0 35,8 30,0 45,4	24,4 24,6 24,7 24,6 26,1
101,6	6,65	В	E	NC 40	133	71	31,9	18,3
	8,38	H B	E E X G	NC 46 NC 40 NC 40 NC 40	146 133* 133 140*	83 71 68* 62*	46,2 31,9 34,4 40,7	19,6 22,5 22,6 23,3
	8,38	Н	S E, X, G S	NC 40 NC 46 NC 46	140 152 152	51 83 76	50,1 45,6 53,1	23,4 23,8 23,9
	9,65	В	E X G	NC 40 NC 40 NC 40 H 90	133 137 140	68 62 71	34,4 40,7 48,0	25,3 25,9 25,8
114,3	6,88 8,56	H B	E, X, G S E, X, G S E, X, G	NC 50 NC 46 NC 46 4 ¹ / ₂ FH 4 ¹ / ₂ FH NC 50	162 159 159 152 159 162	95 76* 70 76 63 95*	46,2 53,7 60,9 47,2 60,9 51,0	22,9 27,5 27,6 27,1 27,7 26,9
	10,92	BH H BH	S E, X, G E X, G S	NC 50 4 ¹ / ₂ FH NC 50 NC 50 NC 50 NC 46	162 152* 162 162 168* 159	89* 76 92 89 73* 76	60,6 47,2 55,9 60,6 82,7 53,7	27,3 27,3 33,5 34,4 35,0 33.0
			E X G S E X, G	NC 46 NC 46 NC 46 41/ ₂ FH 41/ ₂ FH	159 159 159 152* 152*	70 63 57 76 63*	60,9 67,2 67,6 47,2 60,0	33,2 33,4 33,5 32,3 33,5
127,0	9,19	вн	E, X, G S E X	5 ¹ / ₂ FH 5 ¹ / ₂ FH NC 50 NC 50	178 184 162 162	95* 89 95* - 89*	76,5 96,0 51,0 60,6	33,5 34,6 31,2 31,4
	12,70	вн	E X G S E X G	NC 50 NC 50 NC 50 NC 50 NC 50 NC 50	165* 168* 162 165 168	83* 70* 89* 76 70	69,7 88,0 60,9 77,3 80,0	32,0 32,9 40,2 42,1 43,8

		Труба	ı			Замок			
Диа-	Толщина	Тип		Тип	Диаметр), мм	Допусти-	Масса 1 м.с учетом	
метр, мм	метр, стенки, вы- стал		Марка стали			внут- рен- ний	мый мо- мент, кН·м	замка, кг	
127,0	12,70	вн	E, X G S	5 ¹ / ₂ FH	178 184 184	89 89 83	84,3 98,3 105,3	42,4 43,1 43,5	
139,7	9,17	вн	E X G S E X G S	5 ¹ / ₂ FH 5 ¹ / ₂ FH	178 178* 184 190 178 184 184 190	102 95* 89 76 102 89 89 76	76,3 84,0 98,0 117,2 76,3 84,3 98,0 117,2	35,6 36,1 37,2 38,5 40,0 41,5 41,5 42,8	

Примечания І. Тип высадки: В — внутрь, Н — наружу, ВН — внутрь и наружу. 2. Звездочкой обозначены замки, которые японские фирмы изготовляют с размерами, отличающимися от указанных (по стандартам АНИ) без изменения прочностных характеристик труб.

СПЕЦИАЛЬНЫЕ БУРИЛЬНЫЕ ТРУБЫ

КАТАЛОГИ ФИРМ «ОМСКО», «ПЕТКО», «СБК ИНТЕРНЕЙШНЛ», «СМИТ ИНТЕРНЕЙШНЛ»

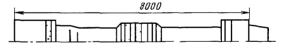


Таблица 5.18

Диаметр с	рубы, мм	Диаметр, мы), ММ	Macca		Допусти- мая рас тягиваю	Допусти- мый мо-	
наружный	внутрен- ний	Толщи: стенки, мм	протек- тора	замка	трубы, Резьба кг		щая на- грузк а, кН	мент, кН м	
88,9 101,6 114,3 127,0	52,4 65,1 69,9 76,2	18,2 18,2 22,2 25,4	100,0 112,7 125,4 138,1	120,6 133,3 158,7 165,1	370 410 580 710	NC-38 NC-40 NC-46 NC-50	1570 1850 2490 3650	13,8 19,5 30,0 41,0	

Примечание. Фирма «СБК Интернейшил» изготавливает трубы с 18° заплечиками

🙎 ПРОЧНОСТНАЯ ХАРАКТЕРИСТИКА НОВЫХ ЗАРУБЕЖНЫХ БУРИЛЬНЫХ ТРУБ

СТАНДАРТ АНИ RP 7G

Таблица 5.19

Днаметр трубы, мм	Толщина стенки, мм	до п	ягиваю редела гериала	текучес	ти ма-	Допустимый крутящий момент, кН·м				H H	нутрен не при мых ра х нагр	допу астягі	скае- иваю-		Сминающее давление, МІ			
		E	х	G	S	Е	X	G	s	E	х	G	s	Е	X	G	s	
60,3	7,11	615	780	860	_	8,5	10,7*	J1,9*	_	106	135	149	_	107	136	150		
73,0	9,19	955	1210	1335	1750	15,6	19,8*	21,9*	28,2*	114	144	160	205	114	144	159	205	
88,9	6,45 9,35 11,40	865 1210 1435	 1530 1820	1690 2010	2175 2585	19,2 25,1* 28,6*	31,9* 36,2*	35,2* 40,0*	45,3* 51,4*	65 95 116	120 147	133 162	171 209	69 97 116	123 146	136 162	175 208	
101,6	6,65 8,38 9,65	1025 1270 1440	1610 1825	 1775 2020	2285 —	26,4 31,6 35,0*	40,0* 44,3*	44,2* 49,0*	56,8* —	59 75 86	95 109	104 120	134	58 78 89	99 113	110 124	139 —	
114,3	6,88 8,56 10,92	1200 1470 1835	1860 2325	2060 2570	 2645 3300	35,1 41,8 50,0*	52,9 63,4*	58,5* 70,0*	75,2* 90,0*	54 68 86	86 110	95 121	122 156	50 72 89	88 113	95 125	116 161	
127,0	9,19 12,70	1760 2360	2230 2985	2465 3300	3165 4245	55,8* 70,9*	70,7 * 89,7 *	78,1* 99,2*	100,5* 127,5*	65 90	83 115	92 127	118 163	69 93	83 118	90 130	108 167	
139,7	9,17 10,54	1945 2210	2465 2800	2720 3095	3500 3980	68,7 76,7	87,1* 97,2*	96,2 107,4*	123,8* 138,0*	59 68	75 86	83 97	107 118	58 72	69 89	74 96	88 118	

Примечания. І. Для труб, обозначенных эвездочкой, прочность замка в зависимости от типа соединения может быть ниже прочности трубы (см. табл. 5.17). 2 Допустимый момент рассчитан из условия $[\tau] = 0.577$ $[\sigma_{\rm T}]$ 3. В таблице приведена характеристика труб, выпускаемых по стандартам АНИ или собственных фирмами «Ниппон Кокан Корпорейшн», «Сумнтомо метал», «Цукамото Секи».

ПРОЧНОСТНАЯ ХАРАКТЕРИСТИКА НОВЫХ БУРИЛЬНЫХ ТРУБ ДЛЯ СЕРОВОДОРОДОСОДЕРЖАЩИХ СКВАЖИН

Таблица 5.20

rpy.	а мм		гимая вающая га, кН	Допус крутя момент,	ищий	Допус внутр давлени	еннее	Сминающее давление, МПа	
Днаметр бы, мм	Толщана стенки, мм	SM-75DS	SM-95DS	SM-75DS	SM-95DS	SM-75DS	SM-95DS	SM-75DS	SM-95DS
101,6	8,38	1265	1610	32,2	40,8	74,6	94,7	78,3	99,1
114,3	8,56 10,92	1470 1835	$\frac{1865}{2325}$	42,6 51,0	54,0 64,6	67,8 86,5	85,8 109,4	71,6 89,3	87,7 112,8
127,0	9,19 12,70	1755 2355	2225 2990	56,9 72,2	72,1 91,5	65,5 90,4	83,0 114,8	69,0 93,1	82,8 117,7

Примечание. Характеристики по данным фирмы «Сумитомо Метал».

АЛЮМИНИЕВЫЕ БУРИЛЬНЫЕ ТРУБЫ (АБТ)

ГОСТ 23786-79, ТУ 41-01-363-79, ТУ 1-2-451-83.

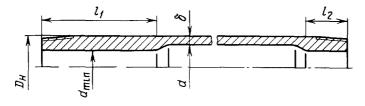


Рис. 5.10. Алюминиевая бурильная труба

Таблица 5.21

Диаметр	Толщина		I	Высадка		Диаметр	Осевой момент	Масса 1 м	
трубы <i>D</i> _Н	стенки б	d 	dmin	l ₁	ī,	протекто- ра	инерции, см ⁴	с учетом вамка, кр	
		TĮ	убы, п	оставля	емые (без резьбы			
54	7,5 8 9 9 9	39	28	150	150	—	33	4,3	
64 73	8	48 55	38 41	200 200	200 200		56 94	6,3 5,7	
90	š l	72	58	200	200		190	7,1	
103	9	85	73	250	250		296	9,2	
108	9	90	58	1000	250		345	11,2	
	Труб	бы, по	ставляе	мые с і	ниппел	ьным соеді	инением		
54	9	36	22	- 1	- 1	- 1	34 [4,4	

Диаметр	Толщина			Высадк	8	Диаметр	Осевой момент	Масса 1 м
трубы Д _Н	стенки б	đ	d _{min}	l_1	l _s	протекто- ра	инерции, см4	с учетом вамка, кл
		Tp	убы, п	оставля	немые (з вамками		
114	10	94	84	1300	250	 	446	11,2
129	9 11	111 107	99 95	1300 1300	250 250		614 716	12,2 14,0
147	9 11 13 15 17	129 125 121 117 113	117 113 107 103 99	1300 1300 1300 1300 1300	250 250 250 250 250	1 1 1	932 1093 1239 1368 1487	14,4 16,5 18,6 20,6 22,5
	Трубыст	іротект	орным	утолще	нием и	навинчен	ными замі	ками
129	11	107	95	1300	250	150	716	14,4
147	11	125	113	1300	250	172	1093	17,0
170	11 13	148 144	136 136	1300 1300	250 250	197 197	1744 1985	20,0 23,5

Примечания. 1. Размеры в мм. 2. Номинальная длина труб диаметром 54 мм \leadsto 4,5 м; 64 мм \leadsto 5,3 м; 73—108 мм \leadsto 9 м; 114 мм и более \leadsto 12 м. 3. Предел текучести материала труб нормальной прочности из сплава Д16Т диаметром до 114 мм включительно \leadsto 255 МПа, диаметром свыше 114 мм \leadsto 274 МПа, труб повышенной прочности любого диаметра \leadsto 294 МПа; из сплавов 1953. Ті и АК4-і. Ті диаметром 129—147 мм соответственно 480 и 274 МПа.

допустимый износ Абт до РАЗМЕРОВ, ММ

РД 39-2-162-79

Таблица 5.22

Диаметр	Толшина	I R	ласе	II :	класс	ный днаметр стенк 50,0 4,5 60,0 4,5 68,0 4,5	
трубы	стенки	Наруж- ный диаметр	Толщина стенки	Наруж- ный диаметр	Толщина стенки	ный	Толщина стенки
54 64 73 90 103 108 114	7,5 8 9 9 9 10 9	53,0 63,0 72,0 89,0 102,0 106,9 112,5 127,5	6,7 7,1 8,1 8,1 8,1 9,0 8,0 10,0	51,5 61,5 70,5 87,5 100,0 105,0 111,0 126,0 126,0	5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	60,0	4,5 4,5 4,5 4,5 4,5 4,5 5,0 5,0 6,0

Днаметр	Толщина	Iĸ	лавв	II ı	Орви	III клаес		
трубы	стенки	Наруж- ный диаметр	Толщина стенки	Наруж- ный диаметр	Толщина стенки	Наруж- ный днаметр	Толщина стенки	
				4				
147	9	145,5	8,0	144,0	6,0	141,0	5,0	
	11	145,5	10,0	144,0	8,0	141,0	6,0	
	13	145,5	12,0	144,0	10,0	141,0	8,0	
	15	145,5	14,0	144,0	11,0	141,0	9,0	
	17	145,5	16,0	144,0	13,0	141,0	10,0	
170	11	168,5	10,0	167,0	8,0	163,0	6,0	
	13	168,5	12,0	167,0	10,0	163,0	8,0	

НАГРУЗКИ, ПРИ КОТОРЫХ НАСТУПАЕТ ПРЕДЕЛ ТЕКУЧЕСТИ АБТ І КЛАССА С УЧЕТОМ ДОПУСТИМОГО ИЗНОСА ИЗ СПЛАВА Д16Т

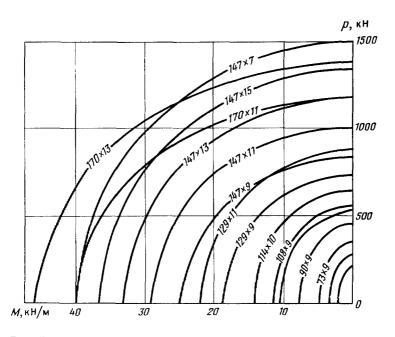


Рис. 5.11. График соотношения допустимых растягивающих нагрузок и моментов вращения для ${\bf A}{\bf B}{\bf T}$

3 3akas 862 65

Таблица 5.23

Днаметр Фрубы, мм	Толщина етенки, мм	Растягиваю- щая нагруэ- ка, кН	Вращающий момент, кН·м	Наружное давление, МПа	Внутреннее давление, МПа
54 64 73 90 103 108 114	7,5 8 9 9 9 9 10	274 350 460 580 675 715 830 930	2,4 3,7 5,5 8,9 12,2 13,5 16,5	60,3 52,5 51,5 39,2 32,4 29,9 32,4 23,0	63,8 57,4 56,4 46,1 39,7 37,8 39,7 34,3
147	11 9 11 13 15 17 11	1115 1070 1290 1500 1700 1900 1500 1750	25,3 29,0 34,0 38,5 42,6 46,3 46,9 53,4	33,3 17,7 29,4 35,3 43,2 51,0 19,6 27,5	41,7 29,9 36,8 43,6 50,0 56,9 31,9 37,3

приведенная плотность абт с учетом массы замка

Таблина 5.24

Диаметр	Толщина	Плотность,	Диаметр	Толщина	Плотность,
Фрубы, мм	стенки, мм	г/см ⁸	трубы, мм	стенки, мм	г/см ^в
54 64 73 90 103 108 114	7,5 9 8 9 9 9 10 9	3,24 3,40 3,79 3,12 3,04 3,09 3,05 3,12 3,17 3,11	147	9 11 13 15 17 11	3,21 3,15 3,11 3,07 3,04 3,16 3,06

5.4. РАСЧЕТ КОЛОННЫ БУРИЛЬНЫХ ТРУБ НА ПРОЧНОСТЬ

Колонну бурильных труб рассчитывают из условия приложения растягивающих нагрузок и вращающего момента (процесс бурения) и растягивающих нагрузок с учетом сил сопротивления, возникающих при подъеме (подъем долота). В любом сечении бурильной колонны должно соблюдаться условие

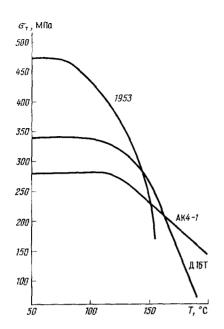
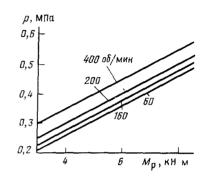



Рис. 5.12. Зависимость предела текучести AБТ от температуры в скважине через 500 ч работы

Рис. 5.13. Зависимость крутящего момента на роторе от давления в ШПМ-500 (в муфте 2ШПМ-500 $M_{\rm KP}$ в 1,8—1,85 раза больше приведенного)

$$V\overline{\sigma_{\rm p}^2 + A \tau^2} \leqslant \sigma_{\rm r}/n$$

где σ_p , $\mathfrak C$ — напряжения в теле трубы рассматриваемого сечения, возникающие под действием соответственно растягивающих нагрузок и вращающего момента, МПа; A — коэффициент анизотропии материала труб (для стали A=4, для алюминиевых сплавов A=4,77); $\sigma_{\mathtt T}$ — предел текучести материала труб в рассматриваемом сечении, МПа (в случае применения AБТ в зоне с температурой более 140 °C предел текучести берется из графика — рис. 5.12); n — коэффициент запаса прочности (при бурении вертикальных скважин роторным способом n=1,4, забойными двигателями n=1,3; при бурении наклонных скважин, если градиент набора или спада кривизны более 4° на 100 м, n=1,45 и n=1,35 соответственно; при бурении в осложненных условиях коэффициенты запаса прочности необходимо увеличить на 0,05).

Прочностные характеристики, МПа, материалов труб

Материал труб	AK-4 1953	Д16Т Л	K	Е Л
$\sigma_{\mathtt{B}}$	364 529	430 650	700	750 800
$\sigma_{\mathbf{r}}$	274 480	300 380	500	550 650

Колонну рассчитывают методом снизу вверх. Исходя из конкретных данных (интервал, диаметр и способ бурения) по имеющимся методикам выбирают тип забойного двигателя, диаметр и длину УБТ, типоразмер бурильных труб. Приближенно определяют необходимое давление на выкиде бурового насоса в про-

цессе бурения $p_{\text{бур}}$.

1. Процесс бурения. Максимальные нагрузки на колонну бурильных труб в процессе бурения возникают в момент резкой заклинки любого элемента компоновки в призабойной зоне, т. е. когда еще не успели остановить ротор. Длина I секции бурильных труб над УБТ в первом приближении не должна превышать

$$l_{\rm I} \ll \frac{10F_{\rm I} \, \sqrt{\frac{\sigma_{_{\rm T}}^2}{n^2} - A \, \frac{M_{_{\rm p}}^2 D^2}{16I^2}} + 0.1G - 10 \, \Delta p F_{_{\rm 0}} - \\ - \frac{- \left(m_{_{\rm T}} + m_{_{\rm VBT}}\right) \left(1 - 0.128 \rho_{_{\rm K}}\right) \cos \alpha_i}{q_{_{\rm I}} \left(1 - \frac{\rho_{_{\rm K}}}{\rho_{_{\rm T}}}\right) \cos \alpha_j},$$

где F_1 — площадь сечения тела трубы I секции, см²; M_p — момент, развиваемый ротором при частоте вращения, обусловленной ГТН для данного интервала бурения, и принятом давлении в муфте привода ротора, $\hat{H} \cdot M$ (M_p выбирают по номограмме — рис. 5.13, при чисто турбинном способе бурения он численно равен тормозному моменту забойного двигателя, но в любом случае не должен превышать допустимого момента свинчивания замкового соединения выбранного типоразмера бурильных труб); D — наружный диаметр трубы I секции, см; I — осевой момент инерции тела трубы I секции, см 4 : G — нагрузка на долото, обусловленная $\hat{\Gamma}$ ТН, Н; Δp — потери давления в долоте, забойном двигателе, УБТ и рассчитываемой I секции бурильных труб при обусловленном ГТН расходе промывочной жидкости, МПа; F_0 — площадь внутреннего канала трубы I секции, см 2 ; $m_{\text{т}}$, $m_{\text{убТ}}$ — масса забойного двигателя и УБТ, кг; $\rho_{\rm x}$, $\rho_{\rm t}$ — плотность промывочной жидкости и материала труб, г/см³ (для стальных труб $\rho_{\rm t}$ = $7.8~{\rm r/cm^3}$, для алюминиевых $\rho_{\rm t}$ = $2.6~{\rm r/cm^3}$); α_i — средний угол наклона ствола скважины от забоя до верхнего конца УБТ, градус (при угле наклона до 15° можно принимать $\alpha_i = 0$); α_i средний угол наклона ствола скважины от УБТ до рассматриваемого сечения, градус (при угле наклона до 15° можно принимать $\alpha_i = 0$); q_I — масса 1 м бурильных труб I секции, кг/м.

Указанная формула предполагает, что момент, развиваемый ротором, полностью передается на забой. Фактически, в глубоких и наклонных скважинах на забой передается момент

$$M_{\rm sao} = M_{\rm p} - M_{\rm x.x}$$

где $M_{\rm x.\,x}$ — момент, затрачиваемый на холостое вращение колонны бурильных труб.

Зависимость $M_{\rm x.\,x}$ от глубины, пространственной траектории, конфигурации сечения ствола скважины, свойств промывочной жидкости и других факторов может быть непрямолинейной. При

подборе бурильных труб без учета потери мощности на холостое вращение ($M_{\rm x.~x}=0$) коэффициент запаса прочности будет несколько выше расчетной величины.

Вторую секцию рассчитывают аналогично по приведенной выше формуле только с уменьшением числителя на величину, равную массе труб I секции с учетом потери веса в промывочной жидкости и угла наклона. Величины, относящиеся к I секции, заменяют величинами, относящимися ко II секции. Расчет проводят до тех пор, пока сумма длин секций не превысит глубины скважины. После выбора компоновки уточняют общие потери давления в системе при промывке $p_{\text{раб}}$.

II. Подъем инструмента. При подъеме инструмента без вращения тангенциальные напряжения отсутствуют, поэтому расчет труб в любом *i*-м сечении можно проводить по формуле

$$P_{\text{crp }i} \leqslant [P_{\text{crp}}]_i/n$$
,

где $P_{\text{стр }i}$, $[P_{\text{стр }}]_i$ — фактические и допустимые растявивающие нагрузки на бурильные трубы в i-м сечении, H.

Растягивающая нагрузка в верхнем сечении первой секции определяется в момент подъема ведущей трубы с работающими насосами по формуле

$$P_{\text{ctp I}} = 1.15 \left[10 \left(m_{\text{T}} + m_{\text{YBT}} \right) \left(1 - 0.128 \rho_{\text{H}} \right) \cos \alpha_i + Q_{\text{cof I}} + \Delta Q \right] + 10 \Delta \rho_{\text{I}} F_0,$$

где $Q_{\text{cof}\,I}$ — сила, направленная вдоль оси бурильной колонны от собственного веса труб I секции, H,

$$Q_{\text{cof I}} = q_{\text{I}} l_{\text{I}} 10 \left(1 - \frac{\rho_{\text{M}}}{\rho_{\text{T}}}\right) \cos \alpha_{j},$$

1,15 — коэффициент, учитывающий силы сопротивления движению вверх рассматриваемой секции бурильных труб (учитывает конфигурацию сечения ствола, силы инерции, свойства промывочной жидкости); ΔQ — дополнительная сила сопротивления, учитывающая силы трения, H; $\Delta \rho_{\rm I}$ — потери давления промывочной жидкости при течении в I секции, расположенных ниже УБТ, забойном двигателе и долоте, а также в затрубном пространстве от забоя до устья, МПа; $q_{\rm I}$, $l_{\rm I}$ — соответственно масса 1 м и длина 1 секции бурильных труб, определенная выше.

Если на рассматриваемом интервале есть наклонный участок ($\alpha \gg 15^\circ$) или участок набора (спада) кривизны, то определяют дополнительную силу сопротивления по следующим формулам:

для наклонного участка

$$\Delta Q_{\mathrm{H}} = 10q_{\mathrm{H}}l_{\mathrm{H}}\mu\left(1-\frac{\rho_{\mathrm{M}}}{\rho_{\mathrm{m}}}\right)\sin\alpha_{\mathrm{H}};$$

для криволинейного участка — набор или спад кривизны, первым слагаемым в формуле Александрова [1] можно пренебречь вследствие незначительной величины,

$$\Delta Q_{\kappa} = 10 Q_{\text{HH}} \mu \psi_{\kappa} (1 + 0.5 \mu \psi_{\kappa} + 0.167 \mu^{2} \varphi_{\kappa}^{2}),$$

где $q_{\rm H}$ — масса 1 м бурильных труб на участке $l_{\rm H}$, кг/м; $l_{\rm H}$ — длина наклонного участка в рассматриваемом интервале, м; μ — коэффициент трения стали по породе (принимается по табл. 5.26); $\alpha_{\rm H}$ — угол наклона участка, градус; $Q_{\rm Hum}$ — масса всех расположенных ниже труб и забойного двигателя, кг; $\psi_{\rm K}$ — суммарный угол охвата на криволинейном участке (пространственный угол искривления ствола скважины), радиан

$$\psi_{R} = 57,3^{-1}\arccos\left(\cos\alpha_{1}\cos\alpha_{2} + \sin\alpha_{1}\sin\alpha_{2}\cos\Delta\theta\right),$$

 α_1 , α_2 — начальный и конечный углы искривления траектории ствола скважины в зенитной плоскости на рассматриваемом криволинейном участке, градус; $\Delta\theta$ — изменение азимутального угла искривления на криволинейном участке, градус.

Пространственный угол можно определить также по формулам А. Колесникова или А. Лубинского.

Так как скважина имеет ограниченную форму сечения, то при движении труб вверх они будут всегда касаться стенок скважины независимо от траектории ствола по образующей (внизу трубы, вверху или сбоку). Поэтому в формуле Александрова все слагаемые должны иметь знак плюс независимо от характера кривизны (набор или спад).

Если при расчете окажется, что $[P_{\tt ctp}]_i/P_{\tt ctp}\,i < n$, то методом последовательного уменьшения длины $l_{\tt I}$ достигают равенства уравнения.

Аналогично определяем длину II секции, приняв первоначально за основу ее длину, определенную в разделе «Процесс бурения». При определении дополнительных сил сопротивления в интервале секции II величина $10Q_{\text{ниж}}$ (для секции II) должна быть увеличена на ΔQ_{I} . Аналогично для секции III — на ΔQ_{I} + ΔQ_{II} .

Расчет ведут до тех пор, пока сумма длин секций не превысит глубину скважины. После расчета компоновки на страгивание бурильные трубы проверяют на циклические нагрузки в интервале набора (спада) кривизны, т. е. проводят расчет на выносливость.

РАСЧЕТ БУРИЛЬНЫХ ТРУБ НА ВЫНОСЛИВОСТЬ

При роторном и турбинно-роторном способах проводки скважины трубы, расположенные в интервалах интенсивного искривления траектории ствола, необходимо проверить на усталостную прочность (выносливость). Кроме того, даже в вертикальном участке ствола колонна бурильных труб при вращении подвержена воздействию циклических нагрузок.

I. Напряжения (в МПа) в растянутой части колонны: на вертикальном или наклонном участке

$$\sigma_{\rm p}=0.01P_{\rm crp}/F, \qquad \sigma_{m}=0, \qquad \sigma_{a}=2.47\frac{EDf}{L^{2}};$$

на участке набора или спада кривизны

$$\sigma_{\rm p} = 0.01 P_{\rm crp}/F$$
, $\sigma_{m} = \sigma_{a}$, $\sigma_{a} = ED/2R$,

где $\sigma_{\rm p}$ — напряжения растяжения; $P_{\rm otp}$ — нагрузка растяжения, действующая при бурении на рассматриваемое сечение, H (определяется по формулам предыдущего раздела); F — площадь опасного сечения тела трубы, см²; $\sigma_{\rm m}$, $\sigma_{\rm a}$ — постоянное и переменное напряжение изгиба; E — модуль упругости материала трубы (для СБТ $E=2,1\cdot10^5$ МПа, для АБТ $E=0,7\cdot10^5$ МПа); f — стрела прогиба трубы, см, f=0,5 ($D_{\rm crb}$ — $D_{\rm s}$); $D_{\rm crb}$, $D_{\rm s}$ — диаметры скважины и замка; L — длина полуволны вращающейся колонны,

$$L=0.0955\sqrt[4]{EI/qn^2}.$$

I — осевой момент инерции тела трубы, см⁴, I=0,049 (D^4-d^4); D, d — наружный и внутренний диаметры тела трубы, см; q — масса 1 см бурильной трубы в рассматриваемом сечении, кг; n — частота вращения ротора, об/мин; R — пространственный радиус кривизны траектории ствола скважины на рассматриваемом интервале длиной l (в м), см, $R=100l/\psi_{\rm R}$.

II. Напряжения в «нулевом» сечении рассчитывают по приведенным выше формулам при условии $\sigma_{\rm p}=0$. Так как «нулевое» сечение расположено в зоне УБТ, то расчет представляет собой проверку прочности УБТ на циклические нагрузки. Опасные сечения УБТ — первая нитка замковой резьбы ниппеля и проточка под элеватор. В формулы проставляют соответствующие размеры D и F при f=0.

При использовании бурильных труб сборной конструкции с резьбой закругленного профиля опасное сечение расположено в основной плоскости резьбы.

Коэффициент запаса прочности

$$n_{\rm B} = \frac{\sigma_{-1} (\sigma_{\rm B} - \sigma_{\rm p})}{\sigma_{\rm B} \sigma_a - \sigma_{-1} \sigma_m} \gg 1.5,$$

где σ_{B} — предел прочности материала трубы на разрыв, МПа; σ_{-1} — предел выносливости материала трубы при симметричном цикле изгиба, МПа.

Если коэффициент запаса прочности окажется менее 1,5, то необходимо через определенный на практике промежуток времени заменять бурильные трубы, расположенные в рассматриваемом интервале, на новые. В противном случае произойдет усталостный слом трубы.

предел выносливости бурильных труб, мпа

Таблица 5.25

1	Типы бурильных труб									
Диаметр труб, мм	твв			ТБ	вк	тыпы Абт		5T		
	д	К	E	д	Е	д	К	Д16Т	1953	
50 60 73 89 114 127 140 147	80 	65 60 60 60	 80 80	140 140 		100 100 100 100	1 9889	50 45 —	 40	

КОЭФФИЦИЕНТЫ ТРЕНИЯ СТАЛИ ПО ПОРОДЕ (ТРЕНИЕ ПОКОЯ)

Таблица 5.26

Порода	Жидкость на контакте трения	Нормальное давление на контакте, МПа		
		0,1	1,0	5,0
Глина	Сухое трение	0,46	0,52	0,62
	Вода	0,16	0,17	0,21
	Глинистый раствор	0,15	0,18	0,20
	То же + УЩР, нефть	0,11	0,13	0,16
	То же + УЩР, СМАД, графит	0,03	0,04	0,06
Аргиллит	Вода	0,36	0,38	0,46
	Глинистый раствор	0,32	0,34	0,40
	То же + УЩР, нефть	0,12	0,13	0,16
	То же + УЩР, СМАД, графит	0,03	0,04	0,05
Известняк	Вода	0,21	0,23	0,30
	Глинистый раствор	0,20	0,22	0,28
	То же + УЩР, нефть	0,05	0,06	0,07
	То же + УЩР, СМАД, графит	0,01	0,02	0,02
Алевролит	Вода	0,33	0,36	0,45
	Глинистый раствор	0,30	0,31	0,38
	То же + УЩР, нефть	0,09	0,09	0,11
	То же + УЩР, СМАД, графит	0,05	0,05	0,07
Песчаник	Вода	0,39	0,41	0,52
	Глинистый раствор	0,38	0,40	0,50
	То же + УЩР, нефть	0,10	0,10	0,13
	То же + УЩР, СМАД, графит	0,04	0,05	0,07

_			ильное д контакте	
Порода	Жидкость на контакте трения	0,1	1,0	5,0
Доломит	Вода Глинистый раствор То же + УЩР, нефть То же + УЩР, СМАД, графит	0,27 0,26 0,05 0,02	0,36 0,35 0,06 0,03	0,41 0,40 0,09 0,04

Примечанье. В опытах принято следующее соотношение добавленных химических реагентов (в %): УЩР + нефть = 5 + 5. УЩР + СМАД + графит = 5 + 1.5 + 1.5.

5.5. ОСНАСТКА БУРИЛЬНОЙ КОЛОННЫ

ЗАМКИ ДЛЯ БУРИЛЬНЫХ ТРУБ

FOCT 5286—75, FOCT 7918—75, TY 26-02-989—84, TY 26-02-811—78, TY 26-02-1026—86, TY 26-02-53—75, TY 26-02-72—76, TY 26-02-1001—85, TY 41-01-208—76, TY 41-01-309—77

Таблица 5.27

	Шн	фр труб	Pe	зьба	sam	метр ка, м		
Шифр	етальных	алюминиевых	samko- Ban	трубная	наруж- ный	внутрен- ний	Длина эамка, мм	Масса, кр
3-42 3-50 3-63,5 3H-95 3J-90 3J-116 3IIIK-118 3J-140 3JK-146 3J-152 3JK-162 3III-178 3IIIK-178B 3IIK-178B 3JK-178 3JK-178 3JK-178	TEB-42 TEB-50 TEB-50 TEB-63,5 TEB-73 TEB-73 TEBK-89 TEBK-102 TEB-114 TEBK-114 TEB-127 TEB-140 TEBK-140 TEBK-140 TEBK-140	ABT-54 —— ABT-73 ABT-103 —— ABT-114 ABT-129 —— ABTBK-147 ABTBK-147	3-42 3-50 3-63,5 3-76 3-102 3-101 3-108* 3-121 3-122* 3-133 3-133* 3-147 3-147 3-147 3-147 3-147	T-42 T-50 T-63,5 — — TT-82 TT-94 — TT-107 — TT-122 — TT-132 MK 148 TT-138	57 65 83 95 90 116 118 133 140 146 152 162 178 178 178	22 28 40 32 41 72 62 72 80 82 95 95 101 101 101 110	355 405 480 430 390 425 506 445 506 445 575 575 575 465	5 7 13 16 11 18 22 23 30 40 61 61 60 40

Примечания. I При использовании смазки P-416 или P-113 гарантийный срок не менее 500 циклов свинчивания-развинчивания 2 Звездочкой обозначена резьба укороченного профиля

переводники для бурильной колонны

ГОСТ 7360-82, ТУ 36-2328-80

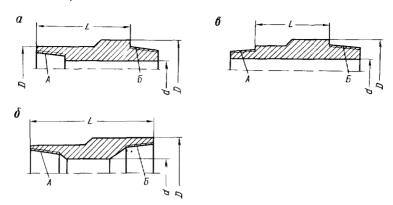


Рис. 5.14. Переводники для бурильной колонны: a — типа Π ; δ — типа M; δ — типа H

Таблица 5.28

	I	Резьба		Днаме	тры, мм	
Шнфр	A	Б	Длина L, мм	наруж ный D	внутрен- ний d	Macea, Kr
		Переходны	ie (рис. 5 .	14, a)		
П-76/76 П-76/88 П-76/101 П-76/121 П-76/147 П-76/152	3-76	3-76 3-88 3-101 3-121 3-147 3-152	300 395 300 300 350 350	95 113 118 146 178 197	32 38 44 44 44 44	22 — — — —
П-86/66 П-86/73 П-86/76 П-86/88 П-86/101	3-86	3-66 3-73 3-76 3-88 3-101	356 356 369 395 420	108 108 108 113 118	25 44 32 38 54	17 16 17 21 23
П-88/76 П-88/88 П-88/101 П-88/117 П-88/121 П-88/147 П-88/152 П-88/171	3-88	3-76 3-88 3-101 3-117 3-121 3-147 3-152 3-171	300 395 420 300 500 350 350	108 113 118 140 146 178 197 203	32 38 58 58 58 58 58	21 22 — 38 —
П-101/88 П-101/102 П-101/117 П-101/127	3-101	3-88 3-102 3-117 3-127	420 437 500 497	118 120 140 146	38 62 58 62	24 22 35 37

	I	Резьба	_	Диаме	тры, мм	
Шифр	A	Б	Длина <i>L</i> , мм	наруж- ный <i>D</i>	внутрен- ний <i>d</i>	Macea, Kr
П-102/88 П-102/101 П-102/117 П-102/121	3-102	3-88 3-101 3-117 3-121	430 430 499 496	120 120 140 146	38 62 58 78	24 21 35 31
П-108/88 П-108/101 П-108/102 П-108/117 П-108/121	3-108	3-88 3-101 3-102 3-117 3-121	451 459 465 463 490	133 133 133 140 146	38 62 70 58 72	27 25 24 36 35
П-117/121 П-117/147	3-117	3-121 3-147	457 523	146 178	78 78	34 56
П-121/86 П-121/101 П-121/102 П-121/108 П-121/121 П-121/122 П-121/133 П-121/147 П-121/152 П-121/161 П-121/161	3-121	3-86 3-101 3-102 3-108 3-121 3-122 3-133 3-147 3-152 3-161 3-171	489 490 496 502 457 469 484 524 350 537 350	146 146 146 146 146 146 155 178 197 203 203	54 62 70 72 80 80 80 80 80 80 80	29 31 30 33 32 34 43 56 73
П-122/101 П-122/102 П-122/108 П-122/117 П-122/121 П-122/133 П-122/147	3-122	3-101 3-102 3-108 3-117 3-121 3-133 3-147	490 496 502 463 457 484 524	146 146 146 146 146 155	62 70 72 58 80 95 95	29 28 32 37 31 36 48
П-133/101 П-133/108 П-133/117 П-133/121 П-133/122 П-133/140 П-133/147 П-133/152 П-133/161	3-133	3-101 3-108 3-117 3-121 3-122 3-140 3-147 3-152 3-161	495 506 497 482 484 510 520 529 532	155 155 155 155 155 155 172 178 197 203	62 72 58 80 82 70 101 89 105	31 34 40 36 37 59 46 63 61
П-147/121 П-147/122 П-147/133 П-147/140 П-147/147 П-147/152 П-147/161 П-147/171	3-147	3-121 3-122 3-133 3-140 3-147 3-152 3-161 3-171	516 528 524 510 517 517 517 517 521	178 178 178 178 178 178 197 203 203	80 82 95 70 101 89 101 101	45 45 44 60 51 74 60 63

		Резьба]	Диаме	тры, мм	1
Шифр	A	Б	Длина Е, мм	наруж- ный D	внутрен- ний d	Масса, кг
П-152/121 П-152/147 П-152/171	3-152	3-121 3-147 3-171	526 517 517	197 197 203	80 101 122	55 67 68
П-161/147 П-161/171 П-161/177	3-161	3-147 3-171 3-177	517 538 523	203 229 225	101 127 102	53 91 97
П-171/147 П-171/171 П-171/177 П-171/201	3-171	3-147 3-171 3-177 3-201	538 517 523 518	203 203 229 254	101 127 101 121	61 60 99 115
П-177/171	3-177	3-171	517	225	102	93
П-201/177 П-201/201	3-201	3-177 3-201	533 537	254 254	101 120	118 122
		Муфтовые (рис. 5.14,	6)		
M-76/66 M-76/76 M-76/86 M-76/88 M-76/101 M-76/117 M-76/121	3-76	3-66 3-76 3-86 3-88 3-101 3-117 3-121	300 300 363 300 300 350	86 95 108 108 118 140 146	36 45 45 45 45 45	9 15 14 — 20
M-88/86 M-88/101 M-88/108 M-88/117 M-88/121 M-88/147 M-88/152 M-88/171 M-88/177 M-88/201	3-88	3-86 3-101 3-108 3-117 3-121 3-147 3-152 3-171 3-177 3-201	325 325 366 300 398 350 350 400 400	113 118 133 108 146 178 197 203 203 230	54 58 58 58 58 58 58 58 58	16 17 20 — 26 — — —
M-117/121 M-117/147	3-117	3-121 3-147	356 400	146 178	78 78	25 34
M-121/152 M-121/171 M-121/177 M-121/201	3-121	3-152 3-171 3-177 3-201	350 350 400 400	197 203 203 230	80 80 80 80	_ _ _
M-152/147 M-152/161 M-152/171 M-152/201	3-152	3-147 3-161 3-171 3-201	391 400 400 469	197 203 229 254	101 122 122 122	44 53 78 82

	P	езьба		Днаме	гры, мм	
Шнфр	A	Б	Длина <i>L</i> , мм	наруж ный <i>D</i>	внутрен- ний <i>d</i>	Macca, KP
M-177/161 M-177/171 M-177/201	3-177	3-161 3-171 3-201	400 400 420	225 229 254	102 101 101	72 73 99
		Ниппельные	(рис. 5.14	ι, θ)		
H-76/76	3-76	3-76	300	95	32	10
H-88/88	3-88	3-88	350	108	38	_
H-101/171	3-101	3-171	400	203	62	
H-121/121 H-121/147 H-121/171	3-121	3-121 3-147 3-171	525 400 400	146 178 203	80 70 70	36 — —
H-147/147 H-147/152 H-147/171	3-147	3-147 3-152 3-171	550 550 707	178 197 203	101 89 101	51 70 93
H-171/177 H-171/201	3-171	3-177 3-201	550 670	225 254	101 120	94 114

Примечания. 1. Переводники выпускают правые и левые. 2. Материал — сталь $40 {\rm X\,H_{1}}$ ивердость ${\rm H\,B} = 285 \div 340.$

ПЕРЕВОДНИКИ ДЛЯ ВЕДУЩИХ БУРИЛЬНЫХ ТРУБ

ТУ 26-02-652-75

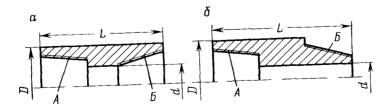


Рис. 5.15. Переводники для ведущих бурильных труб

YY 4	Сто- рона	D,	d,	Ŀ,	Macca,	Резьба					
Шифр	квад- рата, мм	мм	мм	мм	КР	FOCT 631-75	Б, ГОСТ 5286—75				
Вержние (рис. 5.15, a)											
ПВ 65×3-76 ПВ 80×3-88 ПВ 112×3-121 ПВ 112×3-152 ПВ 112×3-171 ПВ 140×3-147 ПВ 140×3-152 ПВ 155×3-152	65 80 112 112 112 112 140 140 155	95 108 146 197 203 178 197 197	38 45 80 89 101 101 89 89	260 275 330 350 375 350 350 357	23 60 48	73Л 89Л 114Л 114Л 114Л 114Л 140Л 140Л 168Л	3-76Л 3-88Л 3-121Л 3-152Л 3-171Л 3-147Л 3-152Л 3-152Л				
]	Ниже	ие (р	рис. 5.18	5, <i>6</i>)					
ПН 65×3-76 ПН 80×3-88 ПН 112×3-117 ПН 112×3-121 ПН 112×3-133 ПН 140×3-140 ПН 140×3-147 ПН 155×3-152 ПН 155×3-171	65 80 112 112 112 140 140 155 155	197	32 38 58 80 95 70 101 89 127	260 275 305 330 335 340 350 375	9 12 18 22 24 30 35 50 39	73 89 114 114 114 140 140 168 168	3-76 3-88 3-117 3-121 3-133 3-140 3-147 3-152 3-171				
Примечание.	Материа	л (зталь	40X F	I.						

протектор-переводник ведущих штанг

ТУ 39-01-321--77

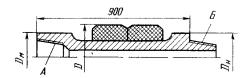


Рис. 5.16. Протектор-переводник ведущих штанг

Таблица 5.30

_	Шяфр	Дна	метр,	мм	Macca.	Резьба			
Шифр	ведущей штанги	D	D _M	D _H	КF	A	Б		
ППВШ-3-171/3-147 ППВШ-3-147/3-147 ППВШ-3-147/3-133 ППВШ-3-121/3-121	155×155 140×140 140×140 112×112	230 200 200 168	203 178 178 146		147 120 85 74	3-171 3-147 3-147 3-121	3-147 3-147 3-133 3-121		

КАЛИБРАТОРЫ, ЦЕНТРАТОРЫ, СТАБИЛИЗАТОРЫ

OCT 39-078-79

Таблица 5.31

Наименование	Исполнение	Вид	Тип	Вооружение	
Калибратор	Лопастный с пря-	K	мС	Твердый сплав	
	мыми лопастями	KA	СТ	Алмазы	
		ки	MCT	Сплав славутич	
	Лопастный со	KC	СТ	Твердый сплав	
	спиральными ло- пастями	KCA	CT	Алмазы	
		КСИ	CTK	Сплав славутич	
	Шарошечн ы й	КШ	MC	Шарошки с фрезер- ным зубом	
			СТ	То же	
			TK	Твердый сплав	
Центратор буриль-	Лопастный с пря-	Ц	MCT	Твердый сплав	
ных колонн	ими лопастями	<u> </u>	MCTK	Сплав славутич	
	Лопастный со	ЦС	MCT	Твердый сплав	
	спиральными ло-			MCTK	Сплав славутич
!	Шарошечный	ЦШ	MC	Шарошки с фрезер- ным вубом	
			TK	Твердый сплав	
			1.07	77	
Центратор вабой- ного двигателя	Лопастный с пря- мыми лопастями	цд	MCT	Твердый сплав	
			MCTK	Сплав славутич	
	Лопастный со спиральными ло-	цдс	MCT	Твердый сплав	
	пастями		MCTK	Сплав славутич	
	Шарошечнай	цдш	MC	Шарошки с фрезер- ным зубом	
		ł	TK	Твердый сплав	

номенклатура выпускаемых калибраторов, центраторов и стабилизаторов

OCT 39-078-79

Таблица 5 32

						Qu l	714	, ווו, פ	0, r	М					
Вид	Тип	139,7	158,7	165,1	188,3	190,5	214,3	215,9	244,5	5697	295,3	393,7	5'###	0'06#	590,0
К	MC														
"	MCT										\mathbb{Z}				
KC	CT														
, A C	CTK														
	MC														
КЩ	METK														
Ц	MCT										//				
цс	MCT														
цш	ΤĶ														
ЦД	MCT						\mathbb{Z}								

Опытные Серийные

КАЛИБРАТОРЫ ЛОПАСТНЫЕ

TY 51-643—74, TY 26-02-962—83, TY 26-02-963—83, TY 26-02-839—79, TY 26-16-109—80

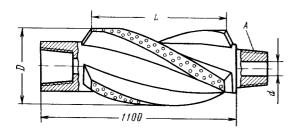
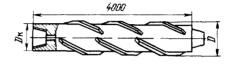


Рис. 5.17. Калибратор лопастный спиральный


Таблица 5.33

		<u> </u>		<u> </u>	Рез	ба А
Шифр	D	d	L.	Mac- ca, Kr	муфто- вая	ниппель- ная
КЛСН 190,5 КЛСН 215,9 КЛСН 269,9 КЛСН 295,3 КЛСН 393,7	190,5 215,9 269,9 295,3 393,7	70 70 70 70 70 70	960 960 960 960 960	121 170 250 265 320	3-117 3-117 3-152 3-152 3-171	3-121 3-147 3-171 3-171 3-171
КЛСВ 190,5 КЛСВ 215,9 КЛСВ 269,9 КЛСВ 295,3 КЛСВ 393,7	190,5 215,9 269,9 295,3 393,7	70 70 70 70 70 70	1100 1100 1100 1100 1100	133 180 285 310 360	3-121 3-147 3-171 3-171 3-171	3-121 3-147 3-171 3-171 3-171
10KCU 187,3 CTK 10KCU 188,9 CTK 10KCU 190,5 CTK 10KCU 212,7 CTK 10KCU 215,9 CTK 10KCU 215,9 CTK 9K 215,9 MC KCU 269,9 CTK 8KC 292,1 CT 8KC 295,3 MC	187,3 188,9 190,5 212,7 214,3 215,9 215,9 269,9 292,1 295,3 295,3	60 60 60 60 60 60 80 90 90	480 480 480 500 500 500 400 600 850 850 850	54 55 56 62 63 64 61 160 346 350 320	3-117 3-117 3-117 3-117 3-117 3-117 3-152 3-152 3-152 3-152	3-117* 3-117* 3-117* 3-117* 3-117* 3-117* 3-117* 3-152* 3-152* 3-152* 3-152*
K (KC) 244,5 K (KC) 269,9 K (KC) 295,3 K (KC) 320,0 K (KC) 393,7 K (KC) 444,5 K 587 MC-1 K 687 MC-1	244,5 269,9 295,3 320,0 393,7 444,5 587,0 687,0	70 70 80 80 80 80 100	1000 1000 1300 1300 1300 1300 1275 1275	158 165 315 325 485 515 365 400	3-147 3-147 3-171 3-171 3-171 3-171 3-171	3-147 3-147 3-171 3-147 3-147 3-147 3-171*

Примечания. І. Калибраторы К имеют прямые лопасти, тип МС; КС — спиральные лопасти, тип СТ. 2. Калибраторы К, КС могут изготовляться со съёмной гильзой. 3. Звездочкой обозначена резьба «муфта». 4. Гарантийный ресурс калибраторов КЛСН, КЛСВ — 65 ч, К — 150 ч, КС — 180 ч, 8КС и 10КСИ — 50 ч.

КАЛИБРАТОРЫ ДЛЯ РОТОРНОГО БУРЕНИЯ

ТУ 39-01-04-747-82

Рис. 5.18. Калибратор для роторного бурения

Шифр .				KPB-324 MCT	КРБ-324 СТК	КРБ-426 МСТ
D, MM				340	340	450
Масса, иг				1000	1000	1200

Приметание. Допустимый износ по днаметру 7 мм, ресурс 600 ч, $D_{\rm K}=229$ мм, резьба 3-171.

КАЛИБРАТОРЫ шарошечные

OCT 26-02-1498-76, TY 26-16-194-86, TY 41-01-401-83

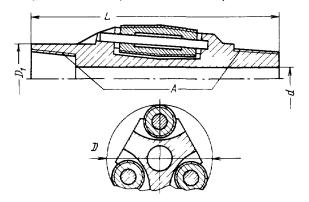


Рис. 5.19. Қалибратор шарошечный

Таблица 5.34

Шифр	D	D_1	ď	L	Масса, кг	Резьба А
ШКШ-76	76,0	70	18	360	8	3-50
КШ3-295,3-1	295,3	178	70	980	210	3-147
КШ3-349,2-1	349,2	203	80	1120	295	3-171
КШ3-393,7-1	393,7	203	90	1180	330	3-171
КШ3-444,5-1	444,5	203	100	1180	365	3-171

Примечания 1. Калибраторы выпускают типов МС, СТ, ТК. 2 Размеры в мм

опора промежуточная

TY 39-01-10-388-78, TY 39-146 75, TY 39-885-83

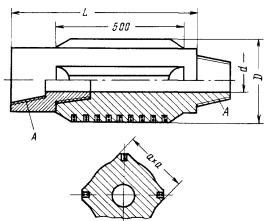


Рис. 5.20. Опора промежуточная

Таблица 5.35

	Диам	етр, мм	Длина.	Macca,	Резьба А		
Шифр	наруж- ный D	внутрен- ний d	L, mm	кр	муфтовая	виппельная	
OII-133 OII-143 OII-153 OII-181 OII-203 OII-269 OB-290 OB-315 OB-340 OB-385	133 143 153 181 203 255 285 315 340 385	70 70 76 76 100 80 90 90 90	314 314 320 400 400 850 655 685 715 760	24 28 28 47 61 175 114 124 141	3.88 3.88 3.102 3.121 3.133 3.147 3.171 3.171 3.171	3-88 3-88 3-102 3-121 3-133 3-147 3-147 3-147 3-147 3-147	

Примечания. 1. Опора ОВ имеет въемную гильну. 2. Гарантийный ресурс опор ОВ — 500 ч, ОП — 1000 ч.

ПРОТЕКТОР РЕЗИНОМЕТАЛЛИЧЕСКИЙ ДЛЯ БУРИЛЬНЫХ ТРУБ

ТУ 39-01-08-761-82, ТУ 39-1185-87

Таблипа 5.38

	Диамо	эмр, мм	_	_	Macca.
Шифр	бурильных труб	скважины, не менее	D, мм	Ь, мм	КP
ПС3-102/194 ПС3-114/219 ПС3-127/245 ПС3-129/245 ПС1-140 ПС3-147/245	102 114 127 129 140 147	170 195 220 220 220 220 220	150 170 186 185 202 194	270 270 270 270 270 192 270	6,1 6,9 7,8 7,6 5,7 8,8

Примечания. 1. Содержание нефти в промывочной жидкости до 15 % при температуре до 150 °C. 2. Допустимый износ 3 мм. 3. Гарантийный ресурс 1000 ч.

КОЛЬЦА РЕЗИНОВЫЕ ДЛЯ БУРИЛЬНЫХ ТРУБ

ΓΟCT 6365-74

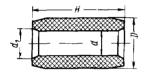


Рис. 5.22. Кольцо резиновое для бурильных труб

Тип Размеры,	 MM:	. A	Б	В	B_i	Γ	Д
d		50	75	90	95	100	120
D		90	115	142	150	165	190
H		155	150	195	195	200	210
d_1		56	81	100	105	110	130

Примечание. Температура промывочной вкидности с добавиой нефти до $150\,^{\circ}\mathrm{C}.$

КЛАПАНЫ ОБРАТНЫЕ ДЛЯ БУРИЛЬНЫХ ТРУБ

OCT 39-096-79

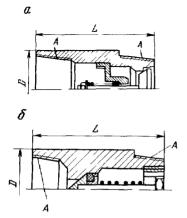


Рис. 5.23. Клапан обратный для бурильных труб

Таблица 5.37

Шнфр	Диаметр <i>D</i> , мм	Длина, <i>L</i> , мм	Масса, кг	Резьба А
	Тарельчатые	(рис. 5.23, а)		
KOBT 80×3-66	1 80	240	l 8	3-66
KOBT 95×3-76	95	260	8 9	3-76
KOBT 108×3-88	108	270	12	3-88
KOBT 120×3-102	120	290	25	3-102
KOBT 133×3-108	133	310	32	3-108
	Манжетные (рис. 5.23, 6)		
КОБ 146×3-121	1 146	l 350	l 40	3-121
КОБ 155×3-133	155	375	43	3-133
КОБ 178×3-147	178	410	45	3-147
КОБ 185×3-161	185	430	55	3-161
КОБ 203×3-171	203	450	65	3-171

СТАБИЛИЗАТОР УПРУГИЙ

ТУ 39-066-74

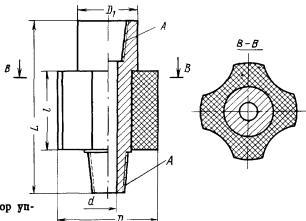


Рис. 5,24. Стабиливатор упругий

Таблица 5.38

		Днаметр, в	им		<i>I</i> , mm	Magga, KP	Резьба А
Шифр	D	D ₁	đ	L, mm			
СУ-268 СУ-241 СУ-212	268 241 212	203 203 178	100 100 80	610 590 540	250 235 215	82 77 49	3-147 3-147 3-121

замок безопасный

TY 39-01-10-331--77

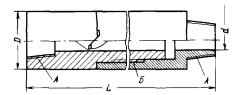


Рис. 5,25. Замов безопасный

Таблица 5.39

717_4 -				Masca,	Момент свинчи-		Резьба
Швфр	D, MM	d, mm	∆, мм	KP	вания, кН·м	A	Б
35-178M 35-146M 35-118M 35T-102 35T-89	178 146 118 133 108	88 68 38 58 38	850 730 690 736 722	124 62 45 46 41	6,5—7,0 4,5—5,0 3,0—3,5 4,0—8,4 3,5—6,1	3-147 3-121 3-88 3-102 3-88	СпУп136×24 СпУп110×24 — — —

РАЗЪЕДИНИТЕЛЬ КОЛОННЫ

ТУ 39-1025-85, ТУ 39-1026-85, ТУ 39-1042-85

Таблица 5.40

		Диамет	р, мы	Дли- на, мм		Мас- са, кг	
Шифр	на-	вну	т ревни й		Растягиваю- щая нагруз- ка, кН		Резъба
	руж- ный в оборе после разъ- единения						
PK-146	149	41	78	925	3500	78	3-121
PK-178	178	41	100	960	5000	125	3-147
РУБ-01-146	146	28	78	530	_	55	3-121
РУБ-01-178	178	48	90	640	_	85	3-147
РУБ-01-203	203	48	100	680		110	3-161

Примечания. 1. Перепад давления для снятия фиксации 8—13 МПа. 2. Ресурс разъединителей РК — 500 ч. РУБ — 300 ч.

АМОРТИЗАТОР КОЛЕБАНИЙ БУРИЛЬНОЙ КОЛОННЫ

ТУ 39-008-179--86

Таблица 5.41

		Днамет	р, мм	Масса.	Резьба	
Шяфр	наруж- ный	внут- ренний	долота	KF	верхняя	вижня
АПО.133.39П	133	40	151,0—161,0	250	3-108	3-88
АПО.146.39П	146	50	161,0190,5	270	3-121	3-121
АПО.172.39П	172	60	190,5-215,9	300	3-147	3-121
АПО.195.39П	195	60	215,9-269,9	480	3-171	3-147
АПО.215.39П	215	85	244,5-269,9	540	3-171	3-152
АПО.240.39П	240	85	>295,3	720	3-171	3-152

Примечания. 1. Длина амортизатора 4 м, допустимые вертикальные колебания 50 мм, 2. Ресурс 200 ч

6. ПРОМЫВКА СКВАЖИНЫ

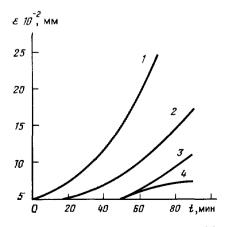
6.1. КЛАССИФИКАЦИЯ ПРОМЫВОЧНЫХ ЖИДКОСТЕЙ

Промывочные жидкости классифицируются по трем основным причинам: по основе — на водной и нефтяной основах и эмульсии; по плотности — облегченные, нормальные и утяжеленные (плотностью до 1,08; 1,26 и свыше 1,26 г/см³ соответственно); по температуростойкости — нетемпературостойкие, ограниченно термостойкие и термостойкие (до 90, 140 и 220 °C соответственно).

Возможны любые сочетания указанных признаков. В свою очередь, промывочные жидкости на водной основе различаются:

по отношению к проходимым породам — неингибированные и ингибированные;

по составу твердой фазы — безглинистые, бентонитовые (содержание гльны $C_{\rm r} < 3$ %), малоглинистые ($C_{\rm r} < 8$ %), глинистые или естественно-глинистые ($C_{\rm r} > 8$ %), палыгорокитовые, глинисто-меловые, меловые.


Палыгорекитовые, глинисто-меловые и меловые промывочные жидкости не могут быть облегченными. Эмульсии и промывочные жидкости на нефтяной основе являются ингибированными.

Неингибированные промывочные жидкости — вода, естественные рассолы солей, соленасыщенная крахмальная эмульсия и глиносодержащие растворы, обработанные ПУЩР, КМЦ, крахмалом.

Ингибированные промывочные жидкости — соленасыщенные (глиногидрогелевые, гидрогельмагниевые), калиевые (калиевые, высококалиевые, феррокалиевые, полимеркалиевые, полимерферрокалиевые), кальциевые (слабоизвестковые, известковые, гипсовые, высококальциевые, хлоркальциевые), силикатные

Рис. 6.1. Зависимость деформации аргиллита от времени при использовании различных промывочных жидкостей:

1— глинистый раствор, обработанный УЩР; 2— клоркальциевый раствор; 3— калиевый раствор; 3— калиевый раствор (3 % КСІ + КССБ + КМЦІ; 4— калиевый раствор (3 % КСІ + гипан)

(малосиликатные, силикатные), алюминатные и алюминатнокалиевые, полимерлигносульфонатные, а также растворы, содержащие ионы железа (ферросульфатные, феррогуматные, полимерферросульфатные, ферроакриловые).

РАСТВОРЫ ДЛЯ БУРЕНИЯ Таблица 6.1

				Промыв	очная жидкость
Класс пород	Породы	Влаж- ность, %	Плотность, г/см ³	Тем- пера- тура, °С	Тип
1	Соль		1,10—1,90 1,30—1,90 1,26—1,40	100 100 100	Глиногидрогелевый Гидрогельмагниевый Соленасыщенная кражмаль- ная эмульсия
II	Глина мягкая, пластичная	25—40	1,02—1,30 1,08—1,30 1,25—1,28 1,26—2,30 1,04—1,16 1,08—2,00 1,20—1,80 1,08—2,30	70 90 90 90 120 140 160 180	Феррокалиеный, высококалиевый ВИЭР, полимеркалиевый клоркальциевый хлоркальциевый алюминатно-калиевый Полимерферросульфатный БИЭР хлоркалиевый Известково-битумный
			1,16—1,20 1,16—2,30 1,26—2,30	180 180 220	Різвестково-онгумный Ферроакриловый Высококальциевый, ферро- сульфатный
III	Глина плотная, мергель, аргиллит	15—25	1,02—1,30 1,05—1,10 1,02—1,10 1,10—1,35 1,18—2,30	70 70 80 80 80 140	Калиевый Малосиликатный Феррогуматный Гипсовый, силикатный Известковый
IV	Сланцы глинистые обезвожен- ные	2—5	1,05—2,20	100	Слабоизвестковый; безглинистый, глинистый или меловой, обработанный УЩР, КМЦ или лигносульфонатами, с низкой водоотдачей
V	Карбонат- ные породы	_	1,03—1,08 1,00—1,03 1,08—1,20 1,20—1,40	70 140 140 140	Полимерный лигносульфонатный Вода Полимерный малоглинистый Меловой

Примечание. Промывочные жидкости для пород I класса могут применяться при проходке пород I-V классов; промывочные жидкости для пород II класса — при проходке пород II-V классов и т. д., но не наоборот.

состав и характеристика буровых растворов

Таблица 6.2

Тип	Қомпоненты	Массовая доля, %	Параметры
Калиевый	Глина Едкий калий Хлористый калий КССБ КМЦ-500 Флотореагент Т-66, Т-80	5—8 0,4 3—4 4—5 0,4 2—3	$ \rho = 1.08 T = 20 ÷ 25 \Phi = 6 ÷ 9 CHC1/10 = 0,3/0,7 pH = 8,5 ÷ 10,5 $
	Глина Едкий калий Хлористый калий КССБ Нефть	3 0,2 5 5	$ \rho = 1,06 T = 20 ÷ 22 \Phi = 8 ÷ 10 CHC1/10 = 1,5/2 pH = 9 $
	Глина Едкий калий Хлористый калий КССБ ПАА + углекислый калий КМЦ-600 Флотореагент Т-66, Т-80 Утяжеление баритом	5 0,5 5 1 0,1—0,5 0,4—0,5 1,0—1,5	$\begin{array}{l} \rho = 1,05 \div 1,30 \\ T = 20 - 50 \\ \Phi = 7 - 7,5 \\ \text{CHC}_{1/10} = 5/7 \\ \text{pH} = 9,5 \end{array}$
Хлор- калиевый	Глина Кальцинированная сода, 10 %-ный раствор Каустическая сода, 40 %-ный раствор или известь Окзил КМЦ-500 Хромпик Хлористый калий Флотореагент Т-66, Т-80 или нефть Эмульсия полиэтилена Утяжеление баритом	8—12 3—5 1—2, 5 20—30 6—10 0,5—2,0 5—7 1—1,5 8—10 0,1—0,3	$\rho = 1,2 \div 1,8$ $T = 60 \div 80$ $\Phi = 3 \div 5$ $CHC_{1/10} = 6/9$ $K^{+} = 5000 \div 7000$ $Ca^{2+} \le 100$ $pH = 8,5 \div 9,5$
Ферро- калиевый	Сернокислое железо, 20 %-ный раствор Хлористый калий Известь «пушонка» Хромпик Флотореагент Т-66, Т-80	5—10 3—7 0,5—1,5 1—1,5 1,5—2	$\rho = 1,02 \div 1,08$ $T = 20 \div 25$ $\Phi = 5 \div 6$ $CHC_{1/10} = 0/1$
Гипсовый	Глина Каустическая сода Гипс КССБ Нефть	10—25 0,15—0,3 1,5—3 1—1,5 8—10	$\rho = 1,2 \div 1,4$

Тип	Компоненты	Массовая доля, %	Параметры
Высоко- кальциевый	Глина ОҚССБ или окзил Известь, 30 %-ный раствор Хлористый кальций КМЦ-500 (600) Хромпик Нефть Утяжеление баритом	10—15 6—7 4—6 0,3—0,5 0,3—0,8 1—1,5 1—1,5 8—20	$\rho = 1,3 \div 2,2$ $T = 70 \div 100$ $\Phi = 2 \div 8$ $CHC_{1/10} = 9/15$ $pH = 8,5 \div 9$ $Ca^{2+} = 4000 \div 5000$
Полимер- клоркаль- циевый	Полиакриламид Окзил Хлористый кальций КМЦ-500 Сульфонол, 30%-ный раствор Нефть	20—22 15—25 20—40 0,2—0,3 0,1—0,2 8—10	$ \rho = 1,2 \div 1,26 $ $ T = 20 $ $ \phi = 10 $ $ \rho H = 6,5 \div 7 $
Ферро- калиевый	Глина Железо сернокислое, 20 %-ный раствор Хлористый калий Известь «пушонка» Окзил КМЦ-500 (600) Жидкое стекло Сульфонол, 30 %-ный раствор Нефть Утяжеление баритом	8—10 5—10 3—7 0,5—1,5 12—25 0,2—0,3 2—3 0,1—0,2 8—10	$ \rho = 1,2 \div 1,3 T = 40 \div 60 \Phi = 3 \div 5 CHC1/10 = 4/8 pH = 7 \div 7,5 $
Алюми- натно- калиевый	Глина Окзил Известь, 30 %-ный раствор Каустическая сода, 10 %-ный раствор Хлористый калий Флотореагент Т-66, Т-80 или нефть Алюминат натрия или глиноземистый цемент, 50 %-ный раствор Утяжеление баритом	8—16 3—7 5—6 5 5 5—7 1,5—2 8—20 1—2 8—10	$ \rho = 1,26 \div 2,30 T = 35 \div 60 \Phi = 2 \div 5 CHC1/10 = 4/9 pH = 10,5 \div 11,5 K+ \leq 5000$
Слабо- известко- вистый	Глина ССБ Известь, 30 %-ный раствор Каустическая сода, 40 %-ный раствор Нефть	10—20 8—10 2—3 1—2 5—7	$\rho = 1,2 \div 1,3$ $T = 35 \div 60$ $\Phi = 4 \div 8$ $CHC_{1/10} = 6/9$ $pH = 9$ $Ca^{2+} = 200$

Продолжение табл. 6.2

Тип	Қомпоненты	Масоовая доля, %	Параметры
Известко- вистый	Глинистый раствор (ρ = 1,2) КССБ . Известь, 30 %-ный раствор Каустическая сода, 10 %-ный раствор Флотореагент Т-66, Т-80 Утяжеление баритом	Исходный 3—4 6,5—7 1—3 1—2	$ \rho = 1,26 \div 2,30 T = 60 \div 70 \Phi = 4 \div 5 CHC1/10 = 3/6 pH = 9 $
Малосили- катный	Глина Кальцинированная сода Жидкое стекло КМЦ (крахмал)	5—7 0,5 3—3,5 0,3 2,5	$ \rho = 1,05 \div 1,1 T = 25 \phi = 10 \div 12 CHC1/10 = 0,8/1,2 pH = 11$
Ферро- гуматн ый	Глина ПУЩР Сернокислое железо, 20 %-ный раствор Сульфонол, 30 %-ный раствор Нефть	2—3 10—20 0,5—1,5 0,1—0,2 8—10	$\rho = 1,02 \div 1,08$ $T = 25 \div 300$ $\phi = 5 \div 6$ $CHC_{1/10} = 1/2$ $pH = 6,5 \div 7$
Ферро- сульфатный	Глина КССБ-4 Известь, 30 %-ный раствор КМЦ-600 Сернокислое железо Флотореагент Т-66, Т-80 Утяжеление баритом	8—10 3—10 3—4 4—6 3—5 1,5—2	$\rho = 1,26 \div 2,30$ $T = 60 \div 70$ $\Phi = 3 \div 4$ $CHC_{1/10} = 3/6$ $pH = 6,5 \div 7$ $Fe^{3+} \ge 2500$
Ферро- акриловый	Глина КССБ 2 Известь, 30 %-ный раствор Сернокислое железо Метас Флотореагент Т-66, Т-80	5—6 3—5 3—4 1—3 0,2—0,3 1,5	$\begin{array}{c} \rho = 1,16 \div 1,20 \\ T = 25 \div 40 \\ \Phi = 8 - 10 \\ \text{CHC}_{1/10} = 1/2 \\ \text{pH} = 6,8 \div 8,2 \end{array}$
Полимер- ферро- сульфатный	Хлористый калий Полнакриламид КМЦ-500 (600), сухая ССБ Вода + сернокислое железо + + мел (15 2 2) Нефть Утяжеление мелом	5—7 1—1,5 0,8—1,2 3—5 2—3 1—2	$ \rho = 1,02 \div 1,16 T = 18 \div 20 \Phi = 2 \div 6 CHC1/10 = 0/0 pH = 7 $

Тип	Компонениы	Массовая доля, %	Параметры
Алюминат- ный	Глина ССБ Известь, 30 %-ный раствор Каустическая сода, 10 %-ный раствор Алюминат натрия или глиноземистый цемент, 50 %-ный раствор Флотореагент Т-66, Т-80 или нефть Утяжеление баритом	10—25 7—8 6,5—7 5—6 1,5—2 8—10 1,5—2 10—20	$\rho = 1,26 \div 2,30$ $T = 35 \div 60$ $\Phi = 3 \div 5$ $CHC_{1/10} = 6/9$ $pH = 10,5 \div 11,5$
Соленасы- щенный	Хлористый натрий Крахмальный реагент Каустическая сода Нефть	20—25 3,5—4 0,7—1 20	$\rho = 1,08 \div 1,12$ $T = 65 \div 70$ $\Phi = 2 \div 3$ $CHC_{1/10} = 0,3/1,5$ $pH = 7 \div 7,5$
Глино- гидро- гелевый	Глина Карналит Едкий натр, 30 %-ный раствор Крахмальный реагент КМЦ-500, сухая Утяжеление баритом Глина Бишофит Едкий натр, 30 %-ный раствор КМЦ-500, сухая Крахмальный реагент МИН-1 Утяжеление баритом	5-6 5,5-6 2,5-3 3,5-4 0,1-0,2 4-6 1,8-2 0,6-0,8 0,1-0,2 2,5-3 10-12	$\rho = 1,1 \div 1,9 \\ pH = 7 \div 8$ $\rho = 1,25 \div 1,90 \\ T = 40 \div 70 \\ pH = 7 \div 8 \\ Mg^{2+} \geqslant 6000$
Гидрогель- магниевый	Бишофит Едкий натр, сухой КМЦ-500 (600), сухая Крахмальный реагент Нефть Утяжеление баритом	40—50 2—3 1—2 2—3 5—7	$ \rho = 1,3 \div 2,0 T = 30 \div 60 \Phi = 3 \div 6 CHC1/10 = 3/6 pH = 7 \div 7,5 $
Поли- мерный, малогли- нистый	Глина Едкий натр, сухой Кальцинированная сода Гипан Утяжеление баритом	8—10 0,1 0,5 0,3—0,5	$ \rho = 1,08 \div 1,2 T = 20 \div 25 \Phi = 8 \div 10 CHC1/10 = 0/0 pH = 9$

Продолжение табл. 6.2

Тип	Қомпоненты	Массовая доля, %	Параметры
Полимер- лигносуль- фонатный	ПУЩР, 20 %-ный раствор ФХЛС, 40 %-ный раствор ПАА + 6 %-ный NaCl (1:1,2), 1,2 %-ный раствор	10 2 0,8—0,9	$\begin{array}{c} p = 1,03 \\ T = 17 \\ \text{CHC}_{1/10} = 0/0 \\ \text{pH} = 7,5 \end{array}$
	ССБ Хромпик ПАА + 6 %-ный NaCl (1:1,2), 1,2 %-ный раствор	35—40 0,5 3,2—3,5	$ \begin{array}{l} \rho = 1,06 \div 1,08 \\ T = 17 \\ \text{CHC}_{1/10} = 0/0 \\ \text{pH} = 6 \div 7 \end{array} $

Примечания. 1. Принятые обозначения: ρ — плотность, г/см°; T = условная вязкость по СПВ-5, с; Φ — показатель фильтрации, см°/30 мин; $CHC_{1/10}$ — статическое напряжение сдвига через 1 и 10 мин, Па; pH — водородный показатель; содержание ионов в мг/л фильтрата. 2. Последовательность реагентов не означает порядка их ввода.

наличие осложнений при бурении в глинистых породах в зависимости от осмотических давлений промывочной жидкости (π_p) и поровых вод (π_n)

Таблица 6.3

Осмотические давления	Давление столба жидкости, р	Возможные осложнения
$\pi_p = \pi_{\pi}$	Равно горному Больше горного Меньше горного	Нарушения не предвидятся
$n_p < n_{m}$	Равно горному Больше горного Меньше горного	Сужения, осыпи, обвалы стенок, образование каверн
$\pi_p > \pi_\pi$	Равно горному Больше горного, но $\Delta p = \Delta \pi$ Меньше или больше горного, но $\Delta p > \Delta \pi$	Нарушения не предвидятся То же Возможны осыпи, обвалы, образование каверн

6.2. МАТЕРИАЛЫ ДЛЯ ПРИГОТОВЛЕНИЯ, УТЯЖЕЛЕНИЯ И ОБРАБОТКИ ПРОМЫВОЧНЫХ ЖИЛКОСТЕЙ

СЫРЬЕ ДЛЯ ПРИГОТОВЛЕНИЯ И УТЯЖЕЛЕНИЯ ПРОМЫВОЧНЫХ ЖИДКОСТЕЙ

Таблица 6.4

Наименование	гост, ост, ту
Сырье глинистое Глинопорошки Глина бентонитовая Черкасского месторождения То же Даш-Сахалинского месторождения Глина тугоплавкая Артемовского месторождения Глина Тиколаевского месторождения » Веселовского месторождения Сырье глинистое Смышляевского месторождения Глина порошкообразная Горбского месторождения Глина Печорского месторождения Сырье глинистое Тучковстого месторождения То же Саноговского месторождения Палыгорскит очищенный » природный обогащенный » природный комовый и молотый » молотый Известняк молотый Концентрат баритовый Баритовый концентрат для буровых растворов Утяжелитель баритовый Концентрат баритовый Концентрат баритовый Гематит Утяжелитель сидеритовый	Ty 39-01-08-657—81 Ty 39-01-08-658—81 Ty 2-043-953—84 Ty 14-9-198—80 OCT 21-30—82 OCT 21-31—77 Ty 21-25-228—79 Ty 21-31-47—85 Ty 6-23-9—81 Ty 21-28-23—75 Ty 36-2597—84 Ty 67-1-1—78 Ty 113-7308001-700—8 FOCT 17498—72 FOCT 12085—73 OCT 21-10—83 Ty 6-18-26—78 Ty 39-981—84 Ty 113-12-115—85 OCT 39-128—82 Ty 39-035—74 Ty 39-01-08-781—82

Глинопорошки по ТУ 39-01-08-658—81, ОСТ 39-202—86. Виды глинопорошков: ПБ — порошок бентонитовый, группы Б, В, Г, Д и Н; ПБМ — порошок бентонитовый модифицированный, группы А, Б, В и Г; ПП — порошок палыгорскитовый, группы В, Г, Д и Н; ПКГ — порошок каолин-гидрослюдистый, группы Д и Н.

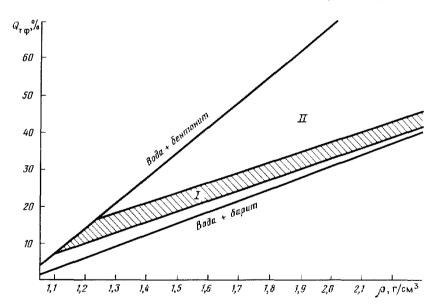

Влажность глинопорошков, %: ПБ, ПБМ и ПКГ — 6—10, ПП — 16—25. Выход глинистого раствора, м³/т, не менее: группа А — 20; группа Б — 16; группа В — 12; группа Г — 8, группа Д — 5 (для ПКГ — 4); группа Н — менее 5 (для ПКГ — менее 4).

Рис. 6.2. Зависимость вязкости от плотности глинистого раствора

Вязкасть, с 100 90 Группа 80 70 60 50 40 Группа Н 30 20 1.04 1.06 1.08 1,10 1,12 Платность раствора, г/см3

Рис. 6.3. Зависимость объемного содержания твердой фазы от плотности пресной промывочной жидкости:

I, II — зона соответственно оптимального содержания твердой фазы и избытка глины

Пример обозначения при заказе: ПБВ-саригюхский, ПКГН-черкасский.

Концентрат баритовый ГОСТ 4682—84

Шифр .							КБ-5	
Содержание	сернокислого	бария.	%.	не	менее.	90	85	80

Утяжелитель баритовый порошкообразный модифицированный ОСТ 39-128—82

Шифр				.*			УБПМ-1	УБПМ-2	УБПМ-3
Плотность, г/см3							4.20	4.15	4.05

Примечания. 1. Влажность менее 2 %. 2. Гидрофильность не менее 80 %. 3. Применяется для утяжеления промывочных жидкостей только на водной основе.

Утяжелитель баритовый ТУ 39-981—84

Сорт								I	H	III
Плотность, г/см ³								4,25	4,15	4,05

Примечания. 1. Получен методом сушки флотационного баритового концентрата до влажности не более 1,5 %. 2. Поставляется в мешках или контейнерах МКР-1,0.

Утяжелитель сидеритовый (ТУ 39-01-08-781—82) — тонкоизмельченная сидеритовая руда плотностью 3,5 г/см³. Содержит примеси углекислых магния и кальция. Поставляется в мешках массой 50 кг при влажности продукта не более 2 %.

Утяжелитель железистый (ТУ 39-035—74) — тонкоизмельченный продукт, содержащий оксиды железа в виде гематита, мартита, магнетита и другие оксиды, плотностью 4,15 г/см³. Влажность не более 12 %. Поставляется в железнодорожных вагонах навалом.

Необходимую массу утяжелителя (т) для утяжеления промывочной жидкости рассчитывают по формуле

$$M = V \frac{\rho_{y_T} (1 - n) (\rho_2 - \rho_1)}{\rho_{y_T} - \rho_2 (1 - n + n\rho_{y_T})},$$

где V — утяжеляемый объем промывочной жидкости, м³; ρ_{yr} — плотность утяжелителя, г/см³; n — влажность утяжелителя, доли единицы; ρ_1 , ρ_2 — плотность промывочной жидкости до и после утяжеления, г/см³.

Плотность утяжелителя, г/см³	2,6	2,9	3,8	4,2	4,25
Максимально возможная плотность промывоч-					
ной жидкости, г/см ⁸	1,7	1,75	1,8	2,2	2,3

Количество барита (т) плотностью 4,2 г/см⁸ и влажностью 5% для доутяжеления 100 м³ промывочной жидкостью приведено в табл. 6.5.

Необходимое количество барита (в кг) плотностью 4,2 г/см³ и влажностью до 10 % для доутяжеления промывочной жидкости до исходной плотности при вводе 1 м³ жидких реагентов приведено в табл. 6.6.

Таблица 6.5

39888								Π	Ілотнос	заг пр	РОВИМС	ной ж	ндкост	и, г/см								
86 86 10 11 11 11 11 11 11 11 11 11 11 11 11								-		_	1	конечн	19									
ная	1,20	1,25	1,30	1,35	1,40	1,45	1,50	1,55	1,60	1,65	1,70	1,75	1,80	1,85	1,90	1,95	2,00	2,05	2,10	2,15	2,20	2,25
1,15 1,20 1,25 1,30 1,35 1,40 1,45 1,50 1,65 1,70 1,75 1,80 1,85 1,90 1,95 2,00 2,05 2,10 2,15	7	14 7	222 14 7 ——————————————————————————————————	30 22 15 7	38 30 23 15 8 	46 38 31 23 15 8	54 47 39 31 23 16 8 	63 56 48 40 32 24 16 8 — — — —	73 65 57 49 40 32 24 16 8	82 74 66 58 49 41 33 25 17 8 ——————————————————————————————————	92 84 76 67 59 50 42 34 26 17 8	103 94 86 77 69 60 51 43 34 26 17 9	114 105 96 88 79 70 61 53 44 35 26 18 9	125 116 107 98 89 80 72 63 54 45 36 27 18 9	137 128 119 110 100 91 82 73 64 55 46 37 27 18 9	149 140 131 121 112 103 84 75 65 56 47 37 28 19 — — —	162 153 143 134 124 115 105 96 76 67 57 48 38 29 19 10	176 166 156 147 137 127 117 107 98 88 78 68 59 49 39 29 20 10	190 180 170 160 150 140 130 120 110 90 80 70 60 50 40 30 20	205 195 184 174 164 154 133 123 113 102 92 82 72 62 51 41 31 21	220 210 200 189 179 168 158 147 126 116 105 95 84 74 63 53 42 32 21 11	237 226 215 205 194 183 172 162 151 140 129 19 108 97 65 54 43 32 21

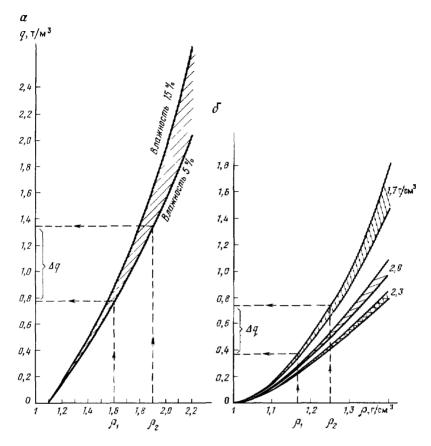


Рис. 6.4. Графики для определения количества утяжелителя, необходимого для утяжеления 1 м 8 промывочной жидкости в диапазоне от ρ_1 до ρ_2 : α — баритом, ρ = 4.4.4,2 г/см 8 ; δ — мелом, ρ = 1.7.4.2,3 г/см 8

Таблица 6.6

Плот- ность]	Исходн	ая пл	отность	пром	ывочно	й жид	кости,	r/cm ^a		
реагента, г/см ⁸	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2,0	2,1	2,2	2,3
0,90	450	620	790	980	1180	1400	1630	1870	2140	2430	2760	3120
0,95	380	540	720	910	1110	1320	1580	1800	2070	2360	2690	3050
1,00	300	470	650	840	1040	1250	1480	1730	2000	2290	2610	2970
1,05	230	400	570	760	960	1180	1410	1660	1920	2220	2540	2900
1,10	160	320	500	690	890	1100	1330	1580	1850	2140	2460	2820
1,15	80	240	420	600	800	1020	1250	1500	1770	2060	2390	2750
1,20	—	160	340	530	730	940	1170	1420	1690	1980	2310	2670
1,25		80	260	450	650	860	1090	1340	1610	1900	2220	2580

химические реагенты, применяемые для обработки промывочных жидкостей

Таблица 6.7

Группа	Реагент	гост, ост, ту
Умягчители воды	Тринатрийфосфат технический Натрия триполифосфат технический в полифосфаг Триполифосфат калия технический Сода кальцинированная кальцинированная Плав соды кальцинированной	FOCT 201—76 FOCT 13493—86 E FOCT 20291—80 TY 6-25-26—80 FOCT 5100—85 E FOCT 10689—75 TY 113-03-479—86
Соли — ингибиторы диспергации глины	Калий клористый То же "" Хлоркалий-электролит Кальций клористый "" Соль поваренная техническая Бишосрит Карналит обогащенный Известь строительная "" негашеная Минерализатор МИН-1 Алюминат натрия сухой "" Цемент глиноземистый Купорос железный	FOCT 4568—83 TY 113-13-2—84 TY 48-10-40—76 TY 48-10-70—81 FOCT 450—77 TY 48-10-59—79 TY 18-11-3—84 FOCT 7759—73 FOCT 16109—70 FOCT 9179—77 TY 81-04-131—78 TY 48-10-15—81 TY 48-5-52—76 TY 64-5-43—83 FOCT 969—77 FOCT 6981—75
Гуматы	Углещелочной реагент порошкообразный Реагент гуматно-калиевый Реагент гуматный модифицированный МГР	TY 39-01-247—79 TY 39-932—84 TY 41-01-479—82
Лигнины	Нитролигнин натриевый Игетан	OCT 59-16—76 TV 59-85—76
Фенолы	Полифенол лесохимический	ТУ 81-05-71—80
Эфиры целлюлозы	Карбоксиметилцеллюлоза техническая » порошковая	ОСТ 6-05-386—73 ТУ 6-09-2344—78
Лигносуль- фонаты	Концентрат СДБ порошкообразный Конденсированная ССБ жидкая То же порошкообразная Конденсированная ССБ-4 Феррохромлигносульфонат Лигносульфонаты технические твердые » » ЛСТМ-2 Окзил Стабилизатор буровых растворов	TY 81-04-225—79 TY 39-09-22—74 TY 39-094—75 TY 39-095—75 TY 39-01-08-348—78 OCT 13-183—83 OCT 13-287—85 TY 84-229—76 TY 13-05-146—81

Группа	Реагену	гост, ост, ту
Танины	Крахмал картофельный э кукурузный	ГОСТ 7699—78 ГОСТ 7697—82
Акрилаты	Гипан Полиакрилонитрил Метас Метакриловый сополимер М-14 ВВ То же Лакрис-20 » Лакрис-95 Полиакриламид-гель технический Полиакриламид сухой Реагент К-4	TY 6-01-166—74 TY 6-01-35—75 TY 6-01-254—74 TY 6-01-1070—76 TY 6-01-1257—81 TY 6-01-1320—86 TY 6-01-1049—81 TY 6-16-2531—81 TY 6-01-1271—82
Щелочи	Сода каустическая техническая Натр едкий технический Гидрат оксида калия технический Гидроксид калия для буровых растворов	ГОСТ 2263—79 ТУ 6-01-1306—85 ГОСТ 9285—78 ТУ 6-18-50—86
Х роматы	Натрия бихромат технический Калия » »	ГОСТ 2651—78 Е ГОСТ 2652—78 Е
Смазыва- ющие добавки	Графит литейный СМАД-1 Флотореагент Т-66 Петролатум Паста кожевенная эмульгирующая Кислота нефтяная мылонафт Масло таловое Добавка смазочная для буровых растворов	TOCT 5279—74 TY 38-101614—76 TY 38-103243—79 OCT 38-01117—76 FOCT 5344—82 FOCT 13302—77 TY 13-05-130—81 TY 51-250—86
Эмульга- торы	Сульфонол порошкообразный	Ty 6-01-1001—75 Ty 6-01-862—75 Ty 6-01-1043—86 Ty 84-509—81 FOCT 8433—81 Ty 6-14-1035—79 Ty 38-101628—76 Ty 81-05-118—77
Пеногаси- тели	Полиэтилен низкой плотности	FOCT 16337—77 E FOCT 16338—85 E TY 6-05-1866—78 FOCT 13032—77 TY 6-02-737—78 TY 6-02-803—78 TY 6-02-820—79 TY 6-02-583—75 FOCT 19652—74 FOCT 13937—86 FOCT 23239—78 TY 38-10743—78 TY 39-888—83

КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ РЕАГЕНТОВ

I. По солестой кости:

несолестойкие — ПУЩР, ТЩР, КССБ, серогель, фосфаты, игетан, нитролигнин, ПФЛХ;

ограниченно солестойкие (NaCl < 10 %) — КМЦ-350, КМЦ-400, КССБ-1, окзил, ФХЛС, СМАД-1, алюминат натрия;

солестойкие (NaCl > 10 %) — крахмал, акрилаты, КССБ-2, КМЦ-500, КБП;

солестойкие к поливалентным катионам (CaCl $_2 > 0,2$ %) — КССБ-1, КССБ-2, окзил, ФХЛС, Т-66, КБП.

Остальные химические реагенты, используемые при бурении скважин, являются солестойкими к поливалентным катионам и к NaCl > 10 %.

II. По термостойкости:

нетермостойкие (T < 100 °C) — гуматы, танины, фосфаты, КМЦ-400, алюминат натрия, ОП-7, ОП-10, эмульсолы, паста кожевенная, КБП;

ограниченно термостойкие (T < 160 °C) КМЦ-500, КМЦ-600, лигносульфонаты, полиэтилен, мылонафт, ПФЛХ, ВЖС;

термостойкие (T < 200 °C) — акрилаты, Φ XЛС, бихроматы, сернокислое железо, сульфонол, СМАД-1, флотореагент, соли натрия, калия и кальция.

6.3. ХАРАКТЕРИСТИКИ РЕАГЕНТОВ

понизители водоотдачи

Углещелочной р плент (УЩР) — порошок марок А и Б (различаются тонкостью помола), рекомендуется добавлять в промывочную жидкость в виде водного раствора 10—15 %-ной концентрации, а также в сухом виде через гидросмеситель или ФСМ. Добавка реагента составляет 0,5—1,0 % (в пересчете на товарный продукт). Поставка в мешках массой до 40 кг. Гарантийный срок годности 6 мес.

Конденсированная сульфит-спиртовая барда (КССБ) — жидкость плотностью 1,11—1,12 г/см³ или порошок марок КССБ, КССБ-1, КССБ-2, КССБ-4 (цифры обозначают содержание фенола в %), которые отличаются по соле- и термостойкости; рекомендуется добавлять в промывочную жидкость в товарном виде. При вводе порошка необходима одновременная добавка щелочи. Величина добавки зависит от степени минерализации промывочной жидкости и забойной температуры, находится в пределах 1—7 % (в пересчете на сухое вещество). Сильно вспенивает. Поставка в железнодорожных цистернах или мешках массой до 20 кг. Гарантийный срок годности 1—3 мес (зависит от завода-поставщика).

Карбоксиметилцеллюлоза (*КМЦ*) — порошок или волокнистый материал в зависимости от марки. Выпускаемые марки: КМЦ-250,

КМІІ-350, КМІІ-500, КМІІ-600 (цифра обозначает степень полимеризации). Чем выше степень полимеризации, тем более солеи термостойкий реагент. Рекомендуется добавлять в промывочную жидкость при р $H=8.5\div9.5$ в сухом виде через гидросмеситель или ФСМ или в виде водного раствора 5—10 %-ной концентрации. Величина добавки зависит от марки реагента, минерализации промывочной жидкости и забойной температуры и составляет 0.2-1 % (в пересчете на товарный продукт). Поставка в мешках массой до 25 кг. Гарантийный срок годности не указан.

Гидролизованный полиакрилонитрил (гипан) — жидкость плотностью 1,1—1,11 г/см³ с концентрацией основного вещества 7—12 %, которая замерзает при отрицательных температурах. Очень чувствителен к присутствию поливалентных катионов, добавляется в промывочную жидкость в товарном виде. Величина добавки зависит от минерализации жидкости по NaCl и забойной температуры и составляет 0,2—2,0 % (в пересчете на основное вещество). При рН < 9,5 коагулирует глинистую фазу промывочной жидкости. Поставка в железнодорожных цистернах или стальных бочках вместимостью 275 л. Гарантийный срок годности 3 мес.

Метакриловый сополимер (метас) — порошок, очень чувствителен к присутствию поливалентных катионов, добавляется в промывочную жидкость с рН = 8,5÷9 в виде водно-щелочного раствора 7—10 %-ной концентрации. Величина добавки составляет 0,3—2,0 % (в пересчете на сухое вещество), зависит от забойной температуры и соленасыщенности промывочной жидкости по NaCl. Метас флокулирует глинистую фазу. Поставка в мешках массой 25 кг, гарантийный срок годности 8 мес.

Соль сополимера метакриловой кислоты (Лакрис-20) — порошок. Для обработки промывочной жидкости применяется марка А. Лакрис-20 — сильный флокулянт выбуренной породы, не чувствителен к поливалентным катионам при содержании до 0,6 г/л, добавляется в промывочную жидкость с рН = 8÷10 в сухом виде через гидросмеситель или ФСМ или в виде водного раствора 5—8 %-ной концентрации. Величина добавки составляет 0,2—2,0 % (в пересчете на сухое вещество) и зависит от минерализации промывочной жидкости. Поставка в мешках массой 20—30 кг, высота штабеля не более 1 м. Гарантийный срок годности 1 г.

Kрахмал — порошок, применяемый для обработки соленасыщенных промывочных жидкостей с р $H=10\div11$. Крахмал добавляется в виде водно-щелочного раствора 5-8 %-ной концентрации. Величина добавки составляет 1,5-2 % (в пересчете на сухое вещество). Поставка в мешках массой 20-25 кг, гарантийный срок годности не обусловлен.

понизители вязкости

Концентрат сульфидно-дрожжевой бражки (КБП) — порошок, применяемый для обработки промывочной жидкости любой минерализации при забойной температуре до $100\,^{\circ}$ С. Вводится в про-

мывочную жидкость в сухом виде, величина добавки 1—2,5 %. Сильно вспенивает. Поставка в мешках массой 20 кг. Гарантийный срок голности 12 мес.

 Φ еррохромлигносульфонат (Φ XЛС) — порошок, добавляемый в промывочную жидкость с р $H=8,5\div9,5$ в сухом виде или в виде водного раствора 30—40 %-ной концентрации. Величина добавки 2—3 % (в пересчете на товарное вещество). Сильно вспенивает. Поставка в мешках массой 40 кг. Гарантийный срок годности 12 мес.

Окисленный лигносульфонат (окзил) — жидкость плотностью 1,12-1,14 г/см³, добавляемая в промывочную жидкость с рH = $8,5\div9,5$ в виде водного раствора 20-30 %-ной концентрации. Величина добавки 1-2 % (в пересчете на товарный продукт) Поставка в железнодорожных цистернах. Гарантийный срок годности не обусловлен.

Понизитель вязкости полифенол лесохимический ($\Pi \Phi \Pi X$) — жидкость плотностью 1,15—1,25 г/см³ с содержанием сухого вещества 30—40 %. Добавляется в промывочную жидкость с рH = $-9 \div 10$ в виде водного раствора 5—10 %-ной концентрации (в пересчете на сухое вещество). Величина добавки 0,2—0,3 % (в пересчете на сухое вещество). Поставка в обогреваемых железнодорожных цистернах. Гарантийный срок годности 6 мес.

 \hat{H} итролигнин — порошок, добавляемый в промывочную жидкость с р $H=9\div10$ в виде водно-щелочного раствора 5—10 %-ной концентрации. Величина добавки 0,2—0,5 % (в пересчете на товарный продукт). Поставка в мешках массой 25 кг. Гарантийный срок годности 1 г.

Игетан (окисленный нитролигнин) — паста с содержанием сухого вещества 50 %, добавляемая в промывочную жидкость в виде водно-щелочного раствора 10—20 %-ной концентрации (в пересчете на товарный продукт). Величина добавки 0,2—0,5 % (в пересчете на сухое вещество). Поставка в полиэтиленовых мешках массой 35 кг. Гарантийный срок годности 1 г.

Кислота І-оксиэтилидендифосфоновая (ОЭДФ) — горючий пастообразный продукт. Добавляется в пресную промывочную жидкость в виде водного раствора 1—10 %-ной концентрации. Величина добавки 0,005—0,3 % (в пересчете на товарный продукт). Поставка в мешках или картонных барабанах массой 50 кг. Гарантийный срок годности 1 г.

Полифосфаты (тринатрийфосфат, триполифосфат натрия или натрия-калия, полифосфат натрия) — кристаллы, порошок и куски стекловидного вещества соответственно. Добавляются в пресную промывочную жидкость с рН = 9 в виде водного раствора 10—20 %-ной концентрации. При наличии ионов кальция в промывочной жидкости вначале действуют как реагент для их нейтрализации, а потом уже как разжижитель. Поставка в мешках массой 30—38 кг или фанерных барабанах массой до 60 кг. Гарантийный срок годности 6—12 мес.

ингибиторы диспергации глины

Буровой реагент ДЭМАН — вязкая жидкость плотностью 1-1,1 г/см³. Добавляется в промывочную жидкость в товарном виде. Поставка в бочках вместимостью 200-275 л. Гарантийный срок годности 12 мес.

Хлористый калий или хлоркалий-электролит — порошок (гранулы, кристаллы) или куски различного размера. Добавляется в промывочную жидкость в товарном виде. Величина добавки 1—7 %, зависит от типа и влажности разбуриваемых глинистых пород и типа промывочной жидкости. Поставляется в мешках массой 40—50 кг или навалом в крытых вагонах. Гарантийный срок годности 6—12 мес.

Хлористый кальций — порошок, чешуйки или гранулы; типы — кальцинированный, плавленый или жидкий. Добавляется в промывочную жидкость в товарном виде или в виде 30—50 %-ного водного раствора. Величина добавки 0,1—10 %, зависит от типа применяемой промывочной жидкости. Неприменим в калиевых растворах. Поставляется в стальных барабанах массой 100—150 кг, полиэтиленовых мешках массой 50 кг, контейнерах МК2-1,5 или специальных железнодорожных цистернах. Гигроскопичен. Срок годности не ограничен.

Хлористый магний (бишофит) — чешуйки, применяется в гидрогельмагниевых растворах. Очень гигроскопичен, растворяется в воде в соотношении 3: 1. Поставляется в мешках с полиэтиленовым вкладышем массой 30 кг или в контейнерах МКР-1,0. Гарантийный срок годности 6 мес.

Гидроксид кальция (известь) — порошок, тип — воздушная гашеная (гидратная). Добавляется в промывочную жидкость в виде водного раствора 20—30 %-ной концентрации. Величина добавки 0,5—2,5 % (в пересчете на сухое вещество). Сильная щелочь. Поставляется в мешках массой 50 кг или навалом в крытых вагонах. Гарантийный срок годности 1 мес.

Хлористый натрий (поваренная соль) — кристаллы. Добавляется в промывочную жидкость в товарном виде. Применяется в соленасыщенных растворах. Поставляется навалом в крытых вагонах. Срок годности не ограничен.

Стекло натриевое жидкое — густая жидкость плотностью 1,36—1,52 г/см³. Виды — содовое и содово-сульфитное; марки А и Б. Применяется в силикатных растворах, вводится в промывочную жидкость в товарном виде, величина добавки 2—5 %. На воздухе быстро твердеет. Поставка в бочках вместимостью 100—250 л или железнодорожных цистернах. Гарантийный срок годности 12 мес.

 Γ идрофобизирующая кремнийорганическая жидкость (ГКЖ-10, ГКЖ-11) — жидкость плотностью 1,17—1,21 г/см³. Добавляется в пресную промывочную жидкость в товарном виде, величина 104

добавки 0,3—1,5 %. Сильная щелочь. Поставляется в бочках вместимостью 100—200 л. Гарантийный срок годности 6 мес.

ТЕРМОСТАБИЛИЗИРУЮЩИЕ РЕАГЕНТЫ

Бихромат натрия (хромпик) — порошок, добавляется в промывочную жидкость в виде водного раствора 10 %-ной концентрации. Величина добавки 0,05—0,2 % (в пересчете на товарный продукт), зависит от забойной температуры и состава промывочной жидкости. Ядовит. Поставка в стальных барабанах массой 50—100 кг. Срок хранения не ограничен.

Бихромат калия (хромпик) — порошок, аналогичен бихромату натрия.

РЕАГЕНТЫ ДЛЯ СВЯЗЫВАНИЯ ИОНОВ КАЛЬЦИЯ И МАГНИЯ

Кальцинированная сода — порошок марки Б или I—III сортов (при изготовлении из нефелинового сырья). Добавляется в промывочную жидкость в сухом виде или в виде водного раствора 5—10 %-ной концентрации. Сильная щелочь. Применяется при модификации глинопорошков и баритового утяжелителя. Поставка в мешках массой 40—50 кг. Гарантийный срок годности 3—6 мес (зависит от завода-изготовителя).

Фосфаты (триполифосфат натрия, тринатрийфосфат, полифосфат натрия, триполифосфат калия) — порошки, добавляются в промывочную жидкость в товарном виде. Величина добавки зависит от количества ионов кальция или магния, переходящих из шлама в промывочную жидкость. Поставка в мешках массой 25—35 кг. Гарантийный срок годности 1 г. и более.

СМАЗОЧНЫЕ ДОБАВКИ

 $CMA \mathcal{L}-1$ — жидкость плотностью 0,9 г/см³, добавляется в промывочную жидкость с рH=9,5 в товарном виде. Величина добавки 1-2 %. Пожароопасен. Поставка в обогреваемых железнодорожных цистернах. Гарантийный срок годности 1 г.

Графит — порошок марок ГС-1, ГС-2, ГС-3 и ГС-4, применяется совместно с нефтью или СМАД-1 в количестве 1—2 %. Поставка в мешках массой 40 кг. Срок хранения не ограничен.

Нефть — жидкость плотностью 0,85—0,89 г/см³, добавляется в промывочную жидкость в количестве 8—20 % совместно с графитом и эмульгаторами. Поставка в железнодорожных цистернах. Срок хранения не ограничен.

Флотореагенты Т-66, Т-80 — жидкость плотностью 1,02—1,05 г/см³, добавляются в промывочную жидкость в виде водного раствора 50 %-ной концентрации. Применяются как стабилизаторы в соленасыщенных промывочных жидкостях, пеногасители и поглотители сероводорода. Величина добавки 0,5—1 %

(в пересчете на товарный продукт). Пожароопасны, при добавке 10 % воды не горят. Поставка в железнодорожных цистернах. Срок хранения не ограничен.

ЭМУЛЬГАТОРЫ

Вспомогательное вещество ОП-10 — маслоподобная жидкость или паста, водорастворимая, сохраняет нефтепроницаемость песчаников, применяется для лучшей диспергации нефти в промывочной жидкости. Добавляется в виде водного раствора совместно с нефтью непосредственно во всасывающую линию насосов. Пожароопасно. Поставка в железных бочках вместимостью 100—300 л. Гарантийный срок годности 1 г.

Сульфонол, сульфонол НП-3 технический — жидкость при содержании основного вещества до 50 % или порошок, сохраняет нефтепроницаемость песчаников, флокулирует баритовый утяжелитель, изготовленный методом флотации. Добавляется в промывочную жидкость в виде нефтяного раствора 0,3—0,5 %-ной концентрации непосредственно во всасывающую линию насосов. Биологически разлагается. Водный раствор сульфонола применяется и как смазывающая добавка. Поставка порошка в мешках массой 10—20 кг, жидкого — в стальных бочках вместимостью 100—200 л или в обогреваемых эмалированных железнодорожных цистернах. Гарантийный срок годности 3—12 мес (зависит от типа продукта).

ПЕНОГАСИТЕЛИ

Флотореагенты T-66, T-80 — характеристика указана выше. Добавляются непосредственно в водные растворы лигносульфонатов в количестве 3—5 % от их объема. Можно добавлять в промывочную жидкость с рH=7,5—8,5 в виде водного раствора 50 %-ной концентрации или в товарном виде.

Аэросил МАС-200 — тонкодисперсный порошок с насыпной массой 50 г/л, добавляется в промывочную жидкость в виде 1—2 %-ной суспензии в дизельном топливе. Величина добавки 2—2,5 % суспензии. Поставка в мешках массой 5—7 кг. Гарантийный срок годности 1 г.

Полиэтилен — порошок, гранулы или крошка любой плотности и марки. Добавляется в промывочную жидкость в виде 10 %-ной суспензии в дизельном топливе. Величина добавки 1—1,5 % суспензии. Поставка в мешках массой 40—50 кг. Срок хранения не ограничен.

Кислота нефтяная — мазеобразное вещество, марка мылонафт. Добавляется в промывочную жидкость в виде 20—25 %-ного раствора в дизельном топливе. Величина добавки 0,2—0,3 % (в пересчете на товарный продукт). Пожароопасна. Поставка в алюминиевых цистернах. Гарантийный срок годности 3 г.

Жидкости 131-86, ПМС-200, ПМС-1000, ПМС-9000, ПМС-15 000— кремнийорганические жидкости, добавляются в промывочную жидкость в товарном виде одновременно с пенообразующим реагентом. Добавка 0,001—0,005 %. Поставка в банках вместимостью 20 л. Гарантийный срок годности 1 г.

Резиновая крошка (PC) — отходы шиноремонтных заводов в виде мелких кусочков. Добавляется в промывочную жидкость в виде 10 %-ной суспензии в дизельном топливе. Величина добавки 1—2 %. Поставляется навалом любым видом транспорта. Срок годности не ограничен.

Спирты синтетические (СЖС) фракции С₇—С₉ — жидкость плотностью 0,82—0,83 г/см³, добавляется в промывочную жидкость в товарном виде одновременно с пенообразующим реагентом. Величина добавки 0,5—1,5 %. Поставка в стальных бочках вместимостью 100—300 л. Гарантийный срок годности 6 мес.

Противовспениватель буровых растворов (триксан) — жидкость плотностью 0,98 г/см³, добавляется в промывочную жидкость в товарном виде через герметичную дозировочную емкость. Очень ядовит. Величина добавки 0,01—0,5 %. Поставка в бочках вместимостью 100—275 л или в железнодорожных цистернах.

РЕГУЛЯТОРЫ РН

Гидроксид натрия (едкий натр, каустическая сода) — кристаллическая масса или жидкость 43—47 %-ной концентрации. Сильная щелочь. Добавляется в промывочную жидкость в виде водного раствора 10—50 %-ной концентрации. Величина добавки зависит от необходимой величины рН. Большие добавки вызывают коагуляцию глины. Поставка в железных бочках вместимостью 100—300 л. Гарантийный срок годности 1 г.

Гидроксид калия (едкий калий) — кристаллическая масса (в виде плава или чешуек) или жидкость 50—54 %-ной концентрации. Сильная щелочь. Добавляется в промывочную жидкость в виде водного раствора 10—50 %-ной концентрации. Поставка твердого — в стальных барабанах вместимостью 50—180 л, жидкого — в специальных железнодорожных цистернах. Гарантия 3 г.

поглотители сероводорода

Диоксид марганца технический (ВНИИТБ-1) — паста, вводится в промывочную жидкость в товарном виде через гидромешалку. Величина добавки зависит от концентрации сероводорода в пластовом флюиде. Ядовит. Поставка в полиэтиленовых мешках или в фанерных барабанах массой до 100 кг, в бочках массой до 250 кг. Гарантийный срок годности 2 г.

Флотореагент Т-66 или Т-80 — жидкость, добавляется в товарном виде. Величина добавки зависит от концентрации серо-

водорода в пластовом флюнде. Поставка в железнодорожных пистернах. Срок годности не ограничен.

Сероводород-нейтрализующая утяжеляющая добавка (СНУД) — мелко размолотый магнетит. Добавляется в промывочную жидкость в товарном виде одновременно как утяжелитель и поглотитель сероводорода. Величина добавки зависит от концентрации сероводорода в пластовом флюиде, так как после химической реакции магнетит выпадает в шлам в виде пирита. Поставка в вагонах навалом. Срок годности не ограничен.

НАПОЛНИТЕЛИ

Асбест хризотиловый — мелковолокнистый (подгруппа П или М) или пылевидный (подгруппа К) материал. Марки от П-3-75 до П-6-20 и от М-3-75 до М-6-20 (вторая группа цифр обозначает массовую долю остатка на сите с ячейкой 4,8 мм). Добавляется в промывочную жидкость в товарном виде. Поставляется в мешках массой 20—50 кг. Срок годности не ограничен.

Слюда молотая флогопит — пылевидный продукт марки СФММ-063, добавляется в промывочную жидкость в товарном виде. Поставляется в мешках массой 40—50 кг или в резинокордных контейнерах МК2-1,5. Масса партии 63 т. Срок годности не ограничен.

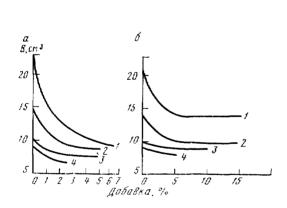


Рис. 6.5. Снижение водоотдачи глинистого раствора различной плотности из глины группы ПББ при обработке кимическими реагентами: $a \to 5$ %-ным раствором КМЦ; $\delta \to 20$ %-ным раствором УЩР; $I \to \rho = 1.02$ p/cm^3 ; $2 \to \rho = 1.04$ p/cm^3 ; $3 \to \rho = 1.04$ p/cm^3 ; $3 \to \rho = 1.06$ p/cm^3 ; $3 \to \rho = 1.08$ p/cm^3

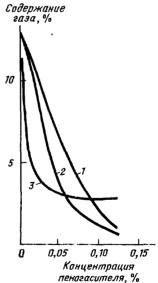


Рис. 6.6. Антивность пеногасителей при обработие глинистого раствора 10 % КССБ:

1 — резиновая крошка; 2 → ПЭП; 3 → ПМС-1000

Наполнитель-дробленая резина — смесь измельченной резины, кордовой ткани и кордового волокна. Длина кордовых нитей не более 30 мм. Марка НДР-10. Добавляется в промывочную жидкость в товарном виде. Поставляется в бумажных или полиэтиленовых мешках. Срок годности 12 мес.

АКТИВНОСТЬ ПЕНОГАСИТЕЛЕЙ

1. Промывочные жидкости, минерализованные хлористым натрием:

полиэтилен, резиновая крошка, мылонафт, стеарат алюминия, флотореагент Т-66;

синтетические жирные кислоты, высшие синтетические жирные спирты;

сивушное масло, жидкость ПМС.

2. Промывочные жидкости, минерализованные хлористым кальцием:

полиэтилен, стеарат алюминия, флотореагент Т-66, высшие синтетические жирные спирты;

резиновая крошка;

сивушное масло, мылонафт, синтетические жирные кислоты, жидкость ПМС.

ПРИГОТОВЛЕНИЕ РАСТВОРОВ ХИМИЧЕСКИХ РЕАГЕНТОВ

Таблица 6.8

	Концен-		Количество	Время	., પ
Реагент	т рация, %	Порядок ввода	на 1 м ⁸ , л	переме- шивания	ROVETO
ПУЩЬ	15	Вода ПУЩР Вода	600 150 Остальное	2—3	24
КМЦ	5	Вода КМЦ Вода	800 50 Остальное	2—3	_
Крахмал	8	Вода Едкий натр сужой Крахмал Вода	800 10 80 Остальное	34	5
ОКССБ	30	Вода КССБ, 50 %-ный раствор	500 400	12	35
		Бихромат натрия (калия) Вода Едкий натр (сухой)	20 Остальное 15—20	1—2 0,5	35
Флотореагент	50	Вода Флотореагент Т-66	500 500	0,1	

Продолжение табл. 6.8

	Концен-		Количество	Время	ι, τι
Реагент	трация, %	Порядов ввода	на і м³, л	переме- шивания	ОТСФОЯ
ПАА	1,2	Вода Натрий хлористый Полиакриламид-гель Вода	500 220 180 Остальное	3—4	2—3
Алюминат на- трия	10	Вода Алюминат натрия (сухой) Вода	800 100 Остальное	1—2	—
Алюминат на- трия	50	Вода Цемент глиноземи- стый Вода	500 500 Остальное	1—2	
Бишюфит	50	Вода Бишофит Едкий ватр (сухой) Вода	500 460 80 Остальное	6—8	24

Примечание. КМЦ можно вводить в промывочную жидкость в сухом виде при рH \approx 8 \div 9; реагенты, не указанные в таблице, можно вводить в промывочную жидкость в сухом виде.

6.4. КОНЦЕНТРАЦИЯ ВЕЩЕСТВ В РАСТВОРАХ РАЗЛИЧНОЙ ПЛОТНОСТИ

Таблица 6.9

Плотность раствора, г/см ⁸	Концентрация, %	Плотность раствора, г/ мª	Концентрация, %
Каустическ 1,01 1,02 1,03 1,04 1,05 1,06 1,07 1,08 1,09 1,10 1,11 1,12 1,13 1,14 1,15 1,16	яя сода 1,0 1,9 2,8 3,7 4,6 5,6 6,5 7,4 8,3 9,2 10,1 11,0 11,9 12,8 13,7 14,6	1,17 1,18 1,19 1,20 1,21 1,22 1,23 1,24 1,25 1,26 1,27 1,28 1,29 1,30 1,31 1,32 1,33 1,34	15,5 16,4 17,3 18,2 19,2 20,1 21,0 21,9 22,8 23,7 24,6 25,6 26,5 27,4 28,3 29,3 30,2 31,1

Продолжение табл. 6.9

1,35 32,1 1,385 32 1,36 33,1 1,410 34 1,37 34,0 1,410 34 1,38 35,0 1,438 36 1,39 36,0 1,461 38 1,40 37,0 1,461 38 1,41 38,0 1,490 40 1,42 39,0 Xnophering kaneurgh 1,43 40,0 Xnophering kaneurgh 1,44 41,0 Xnophering kaneurgh 1,46 43,1 1,10 11,8 1,47 44,2 1,10 11,8 1,48 45,2 1,12 13,9 1,49 46,3 1,14 16,0 1,50 47,3 1,16 18,1 1,51 48,4 1,18 20,0 1,52 49,4 1,18 20,0 1,050 1,24 26,2 1,22 24,2 CCB 1,24 26,2 1,25 1,30 32,2 1,050 1,30 32,2 1,100 20,0 1,30 32,2 1,280 35,0 1,04 5,2 1,280 50,0 1,04 5,2 <th>аство- г³</th> <th>Плотность раств ра, г/см³</th> <th>Концентрация, %</th> <th>Плотность раство- ра, г/см³</th> <th>Концентрация, %</th>	аство- г ³	Плотность раств ра, г/см³	Концентрация, %	Плотность раство- ра, г/см³	Концентрация, %
1,30 1,37 34.0 1,38 35.0 1,48 1,40 37.0 1,41 38,0 1,490 40 1,42 39,0 1,43 1,44 41.0 1,45 42,1 1,46 43,1 1,47 44,2 1,48 45,2 1,12 1,39 1,49 1,49 1,49 46,3 1,14 1,50 47,3 1,51 48,4 1,52 49,4 1,52 1,53 50,5 1,20 22,1 1,22 24,2 1,26 28,2 1,050 1,130 1,250 1,130 1,250 1,130 1,250 1,20 1,22 24,2 1,26 28,2 1,26 1,28 30,2 1,315 1,350 1,20 1,20 1,20 1,30 1,30 32,2				1.385	32
1,38 35,0 1,438 36 1,39 36,0 1,461 38 1,40 37.0 1,461 38 1,41 38,0 1,490 40 1,42 39,0 1,490 40 1,44 41,0 Xnopheria kanehuh 1,45 42,1 1,08 9,8 1,46 43,1 1,10 11,8 1,47 44,2 1,10 11,8 1,49 46,3 1,14 16,0 1,50 47,3 1,16 18,1 1,52 49,4 1,18 20,0 1,53 50,5 1,20 22,1 1,22 24,2 1,22 24,2 1,26 28,2 1,26 28,2 1,050 1,050 1,30 32,2 1,100 20,0 1,30 32,2 1,185 35,0 1,28 30,2 1,250 45,0 1,04 5,2 1,315 55,0 1,04 5,2 1,38 10,6 7,8				· ·	
1,39 36,0 1,461 38 1,40 37,0 1,490 40 1,41 38,0 1,490 40 1,43 40,0 Xлорислый кальций 1,44 41,0 1,08 9,8 1,46 43,1 1,10 11,8 1,47 44,2 1,10 11,8 1,49 46,3 1,14 16,0 1,50 47,3 1,16 18,1 1,51 48,4 1,18 20,0 1,53 50,5 1,20 22,1 1,050 10,0 1,28 30,2 1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,130 25,0 1,28 30,2 1,185 35,0 1,28 30,2 1,220 40,0 1,28 30,2 1,280 50,0 1,04 5,2 1,315 55,0 1,06 7,8 1,350 60,0 1,06 7,8 1,087 8 1,11 14,8 1,087 8 1,13 17,6 1,087 8 1,13 17,6 1,087 8 1,				-	
1,40 37,0 1,490 40 1,41 38,0 1,490 40 1,42 39,0 Xлорислый кальций 1,43 40,0 Xлорислый кальций 1,44 41,0 1,46 43,1 1,10 11,8 1,47 44,2 1,10 11,8 1,9 1,49 1,49 46,3 1,14 16,0 13,9 1,49 1,50 1,14 16,0 18,1 1,16 18,1 1,18 20,0 1,18 1,20 22,1 1,20 22,1 1,20 22,1 1,22 24,2 24,2 1,22 24,2 26,2 1,24 26,2 28,2 1,26 28,2 1,26 28,2 1,26 28,2 1,26 28,2 1,24 26,2 24,2 1,24 26,2 1,24 26,2 1,26 28,2 1,24 26,2 1,26 28,2 1,26 28,2 1,28 30,2 1,30 32,2 1,30 32,2 1,30 32,2 1,30 32,2 1,30 32,2 1,30 32,2 1,30 <				j ·	
1,41 1,42 1,43 1,44 1,45 1,46 1,47 1,48 1,49 1,49 1,49 1,50 1,50 1,50 1,51 1,51 1,51 1,51 1,52 1,94 1,53 1,55 1,55 1,20 20,1 1,100 1,30 1,155 1,100 1,130 25,0 1,110 1,130 1,28 1,185 1,185 1,20 1,28 1,185 1,186 1,186 1,186 1,199 1,100	Į.			1	
1,43 40,0 Хлористый кальций 1,44 41,0 41,0 1,45 42,1 1,08 9,8 1,47 44,2 1,10 11,8 1,48 45,2 1,12 13,9 1,49 46,3 1,14 16,0 1,50 47,3 1,16 18,1 1,51 48,4 1,18 20,0 1,52 49,4 1,18 20,0 1,53 50,5 1,20 22,1 CCB CCB 10,0 1,28 30,2 1,075 15,0 1,30 32,2 1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,100 1,30 32,2 1,220 40,0 1,30 32,2 1,280 50,0 1,04 5,2 1,350 45,0 1,02 2,6 1,280 50,0 1,04 5,2 1,350 60,0 1,04 5,2 1,36				1,490	40
1,45 42,1 1,08 9,8 1,46 43,1 1,10 11,8 1,48 45,2 1,12 13,9 1,49 46,3 1,14 16,0 1,51 48,4 1,18 20,0 1,52 49,4 1,18 20,0 1,53 50,5 1,20 22,1 1,52 49,4 1,18 20,0 1,53 50,5 1,20 22,1 1,53 10,0 1,22 24,2 1,050 10,0 1,28 30,2 1,100 20,0 1,30 32,2 1,100 20,0 1,30 32,2 1,185 35,0 1,30 32,2 1,220 40,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,04 5,2 1,350 60,0 1,06 7,8 1,08 1,06 7,8 1,08 1,09 12,0 1,10 13,4 1,08 1,01 1,4 1,09 1,20 1,10 13,4 1,08 1,01 1,14 19,0 1,133		1,43	40,0	Хлориссыі	й кальций
1,46 43,1 1,10 11,8 1,47 44,2 1,12 13,9 1,49 46,3 1,14 16,0 1,50 47,3 1,16 18,1 1,51 48,4 1,18 20,0 1,52 49,4 1,18 20,0 1,53 50,5 1,20 22,1 CCB CCB 1,20 22,1 CCB 1,24 26,2 1,050 10,0 1,28 30,2 1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,185 35,0 1,30 32,2 1,220 40,0 1,280 1,00 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,04 5,2 1,350 60,0 1,04 5,2 1,06 7,8 1,08 10,6 1,023 2 1,11 14,8 1,10 13,4 1,10 13,4 1,025				1.08	8 9 8
1,47 44,2 1,12 13,9 1,49 46,3 1,14 16,0 1,50 47,3 1,16 18,1 1,51 48,4 1,18 20,0 1,53 50,5 1,20 22,1 1,53 10,0 1,22 24,2 1,050 10,0 1,24 26,2 1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,130 25,0 1,30 32,2 1,185 35,0 Известь в растворах известкового молока 1,220 40,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,04 5,2 1,350 60,0 1,06 7,8 1,08 10,6 7,8 1,08 10,6 1,11 14,8 1,08 10,6 1,11 14,8 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 <td< td=""><td>ł</td><td></td><td></td><td>j :</td><td></td></td<>	ł			j :	
1,49 46,3 1,14 16,0 1,50 47,3 1,16 18,1 1,51 48,4 1,18 20,0 1,53 50,5 1,20 22,1 1,53 50,5 1,20 22,1 1,53 10,0 1,22 24,2 1,050 10,0 1,28 30,2 1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,185 35,0 1,30 32,2 1,185 35,0 1,30 32,2 1,220 40,0 1,30 32,2 1,250 45,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,04 5,2 1,350 60,0 1,06 7,8 1,08 10,6 7,8 1,08 10,6 7,8 1,08 1,11 14,8 1,08 1,11 14,8 1,08 1,11 1,14 19,0 1,133					·
1,50 47,3 1,16 18,1 1,51 48,4 1,18 20,0 1,52 49,4 1,18 20,0 1,53 50,5 1,20 22,1 CCB 1,20 22,1 CCB 1,22 24,2 CCB 1,24 26,2 1,050 15,0 1,26 28,2 1,075 15,0 1,28 30,2 1,100 20,0 1,30 32,2 1,130 25,0 1,30 32,2 1,185 35,0 Известь в растворах известкового молока 1,220 40,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,04 5,2 1,350 60,0 1,06 7,8 1,08 10,6 1,10 13,4 1,085 4 1,10 13,4 1,087 8 1,11 14,8 1,108 10 1,14 19,0 1,133 12 1,15 <td>İ</td> <td></td> <td></td> <td>1</td> <td></td>	İ			1	
1,51 48,4 1,52 49,4 1,53 50,5 1,53 50,5 1,53 1,20 22,1 1,22 24,2 1,26 28,2 1,050 10,0 1,100 20,0 1,100 20,0 1,130 25,0 1,155 30,0 1,185 35,0 1,220 40,0 1,250 45,0 1,280 50,0 1,315 55,0 1,350 60,0 1,06 7,8 1,08 10,6 1,08 1,11 1,08 10 1,133 17,6 1,133 12 1,178 16 1,205 18 1,205 1,18 205 1,18 24,5 1,255 22 1,18 24,5 1,250 1,18 2,56 1,19 1,06 7,8 1,08 10,6 1,10 13,4 1,4 1,12 1,62 1,14 1,133 17,6 1,133		1,49			· ·
1,52 49,4 1,18 20,0 1,53 50,5 1,20 22,1 CCB 1,22 24,2 1,050 10,0 1,26 28,2 1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,130 25,0 1,30 32,2 1,185 35,0 Известь в растворах известкового молока 1,220 40,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,06 7,8 1,350 60,0 1,06 7,8 1,08 10,6 7,8 1,08 10,6 1,11 14,8 1,065 6 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8	1			1	,
1,53 50,5 1,20 22,1 CCB 1,22 24,2 1,050 10,0 1,26 28,2 1,075 15,0 1,28 30,2 1,100 20,0 1,30 32,2 1,155 30,0 Известь в растворах известкового молока 1,220 40,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,06 7,8 1,350 60,0 1,06 7,8 1,04 5,2 1,10 13,4 1,045 4 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,178 16 1,17 23,1 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8	1				
ССБ 1,050 1,075 1,075 1,100 20,0 1,130 25,0 1,185 35,0 1,220 1,280 1,280 1,315 1,380 1,080 1,08 1,08 1,08 1,08 1,08 1,08 1			50,5	1,20	22,1
1,050 10,0 1,26 28,2 1,075 15,0 1,30 30,2 1,100 20,0 1,30 32,2 1,130 25,0 1,30 32,2 1,155 30,0 Известь в растворах известкового молока 1,220 40,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,04 5,2 1,350 60,0 1,06 7,8 1,08 10,6 7,8 1,08 10,6 1,09 12,0 1,045 4 1,10 13,4 1,065 6 1,11 14,8 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8				·	24,2
1,050 10,0 1,28 30,2 1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,130 25,0 1,30 32,2 1,155 30,0 Известь в растворах известкового молока 1,220 40,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,04 5,2 1,350 60,0 1,06 7,8 1,08 10,6 7,8 1,08 10,6 1,09 12,0 1,045 4 1,10 13,4 1,065 6 1,11 14,8 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8	ССБ		Б	1,24	26,2
1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,130 25,0 1,30 32,2 1,155 30,0 30,0 Известь в растворах известкового молока 1,220 40,0 1,250 45,0 1,02 2,6 1,280 50,0 1,04 5,2 2,6 1,315 55,0 1,04 5,2 1,350 60,0 1,06 7,8 1,08 10,6 7,8 1,09 12,0 1,10 13,4 1,045 4 1,10 13,4 1,065 6 1,11 14,8 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 17,6 1,14 19,0 1,133 12 1,15 20,4 1,178 16 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8 </td <td></td> <td></td> <td>_</td> <td>1,26</td> <td>28,2</td>			_	1,26	28,2
1,075 15,0 1,30 32,2 1,100 20,0 1,30 32,2 1,130 25,0 1,30 32,2 1,155 30,0 Известь в растворах известкового молока 1,220 40,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,04 5,2 1,350 60,0 1,06 7,8 1,08 10,6 7,8 1,08 10,6 7,8 1,09 12,0 1,10 13,4 1,045 4 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 17,6 1,14 19,0 1,133 12 1,15 20,4 1,178 16 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8	1	1,050	0,01	1.28	30.2
1,100 20,0 1,130 25,0 1,155 30,0 1,185 35,0 1,220 40,0 1,250 45,0 1,280 50,0 1,315 55,0 1,350 60,0 1,06 7,8 1,08 10,6 7,8 1,09 1,09 12,0 1,04 13,4 1,08 10,6 1,08 10,6 1,08 10,6 1,08 10,6 1,08 1,10 1,11 14,8 1,087 8 1,13 17,6 1,108 10 1,133 17,6 1,108 10 1,13 17,6 1,133 17,6 1,153 14 1,178 16 1,205 18 1,230 20 1,18 24,5 1,255 22		1,075		· ·	•
1,155 30,0 Известь в растворах известкового молока 1,220 40,0 1,250 45,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,06 7,8 1,350 60,0 1,08 10,6 Алюминат натрия 1,023 2 1,11 14,8 1,045 4 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,178 16 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8				1,00	5-2,-
1,185 35,0 известкового молока 1,220 40,0 1,250 45,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,06 7,8 1,350 60,0 1,06 7,8 1,08 10,6 1,08 10,6 Алюминат натрия 1,10 13,4 1,023 2 1,11 14,8 1,045 4 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 17,6 1,14 19,0 1,133 12 1,15 20,4 1,178 16 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8				Израсть п	nacroonay
1,250 45,0 1,02 2,6 1,280 50,0 1,04 5,2 1,315 55,0 1,06 7,8 1,350 60,0 1,08 10,6 Алюминат натрия 1,023 2 1,10 13,4 1,045 4 1,12 16,2 1,065 6 1,13 17,6 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8		1,185	35,0		
1,280 50,0 1,04 5,2 1,315 55,0 1,06 7,8 1,350 60,0 1,08 10,6 Алюминат натрия 1,09 12,0 1,023 2 1,11 14,8 1,045 4 1,12 16,2 1,065 6 1,13 17,6 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8		1,250		1.02	2.6
1,315 55,0 1,350 1,06 Алюминат натрия 1,09 1,09 12,0 1,10 13,4 1,045 4 1,065 6 1,087 8 1,13 17,6 1,108 10 1,133 17,6 1,133 12 1,153 14 1,178 16 1,205 18 1,230 20 1,18 24,5 1,255 22 1,19 25,8		1,280		1	
Алюминат натрия 1,08 10,6 1,023 2 1,10 13,4 1,045 4 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,178 16 1,17 23,1 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8				l '	,
Алюминат натрия 1,09 12,0 1,023 2 1,11 14,8 1,045 4 1,12 16,2 1,065 6 1,13 17,6 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,178 16 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8	l	1,350	60,0	· ·	
1,10					· ·
1,023 2 1,11 14,8 1,045 4 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,178 16 1,16 21,8 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8	номинат на	Алюми	натрия	i .	,
1,045 4 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,178 16 1,17 23,1 1,205 18 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8		1.000		I	
1,065 6 1,12 16,2 1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,178 16 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8					· ·
1,087 8 1,13 17,6 1,108 10 1,14 19,0 1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,178 16 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8				1	
1,133 12 1,15 20,4 1,153 14 1,16 21,8 1,178 16 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8			8	1 .	· ·
1,153 14 1,16 21,8 1,178 16 1,17 23,1 1,230 20 1,18 24,5 1,255 22 1,19 25,8	ļ				•
1,178 1,205 1,205 1,230 1,255 1,255 1,255 1,10 1,10 1,10 1,10 1,10 1,17 23,1 24,5 1,19 24,5 25,8	ł			1,15	20,4
1,205 1,230 1,255 1,255 1,255 1,19 23,1 1,17 23,1 1,18 24,5 1,19 25,8	1			1,16	21,8
1,230 20 1,18 24,5 1,255 22 1,19 25,8				1,17	23,1
1,255 22 1,19 25,8				1,18	24,5
	ł		22		
	İ	1,283	24	i i	
1,310 20 101 00.6	1			1	
1,000					,
1,360 30 1,22 30,0		1,500	30	1,44	00,0

6.5. ПОДАЧА НАСОСОВ

ПОДАЧА (л/с) БУРОВОГО НАСОСА УНБТ-950

Таблица 6.10

	Чнсло ходов штока в і мин	Диаметр втулок, мм									
Частота вращения		1	40	16	60	180					
вала электро- двигателя, об/мин			Коэффициент наполнения								
		1,0	0,9	1,0	0,9	1,0	0,9				
100 200 300 400 500 600 700 800 900 990	12,6 25,2 37,8 50,4 63,0 75,6 88,2 100,8 113,4 125,0	2,8 5,6 8,4 11,2 13,9 16,7 19,5 22,3 25,1 27,8	2,5 5,0 7,6 10,0 12,5 15,0 17,5 20,1 22,6 25,0	3,7 7,3 11,0 14,7 18,4 22,0 25,7 29,4 33,1 36,4	3,3 6,6 9,9 13,2 16,6 19,8 23,1 26,5 29,8 32,8	4,7 9,3 14,0 18,7 23,3 28,0 32,7 37,3 42,0 46,2	4,2 8,4 12,6 16,8 21,0 25,2 29,4 33,6 37,8 41,6				

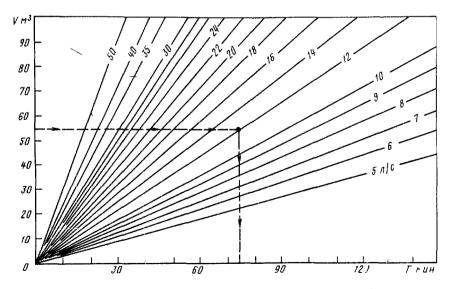


Рис. 6 7. График определения времени прокачивания ваданного объєма промывочной жидкости при различной подаче насосов

подача, (л/с), БУРОВОГО НАСОСА У8-6М2А, У8-7М

Таблица 6.11

8										Диамет	гр втул	lok, Mi	M					_			
я кодов		200			190			180	_		170			160			150			140	
двойныя									Ķα	пиффец	иент н	аполне	нкя			<u></u>		_			
HE HER	1,0	0,9	0,8	1,0	0,9	0,8	1,0	0,9	0,8	1,0	0,9	0,8	1,0	0,9	0,8	1,0	0,9	0,8	1,0	0,9	0,8
65	50,0	45,0	40,0	44,8	40,3	35,9	40,0	36,0	32,0	34,8	31,3	27,9	30,4	27,4	24,3	26,2	23,6	21,0	18,6	16,7	14,9
60	46,2	41,5	37,0	41,4	37,2	33,1	36,9	33,2	29,5	32,2	28,9	25,8	28,1	25,3	22,4	24,2	21,8	19,4	17,2	15,5	13,7
55	42,3	38,1	33,8	37,9	34,1	30,4	33,8	30,4	27,0	29,5	26,5	23,6	25,7	23,2	20,6	22,2	20,0	17,8	15,7	14,2	12,6
50	38,4	34,6	30,8	34,4	31,0	27,6	30,7	27,7	24,6	26,8	24,1	21,5	23,4	21,1	18,7	20,2	18,2	16,2	14,3	12,9	11,5
45	34,8	31,2	27,7	31,0	27,9	24,9	27,6	24,9	22,1	24,1	21,7	19,4	21,1	18,9	16,8	18,2	16,4	14,6	12,9	11,6	10,3
40	30,8	27,7	24,6	27,6	24,8	22,1	24,3	22,1	19,7	21,4	19,3	17,2	18,7	16,9	15,0	16,2	14,6	12,9	11,5	10,3	9,2
35	27,0	24,2	21,5	24,1	21,7	19,3	21,3	19,3	17,2	18,7	16,9	15,0	16,4	14,8	13,1	14,2	12,8	11,3	10,1	9,0	8,1

6.6. МАТЕРИАЛЫ И ОБОРУДОВАНИЕ

СЕТКИ ПРОВОЛОЧНЫЕ ТКАНЫЕ ДЛЯ ОЧИСТКИ БУРОВОГО РАСТВОРА

ТУ 39-01-793-82

Таблица 6.12

Номер сетки	Размер ячейки в свету, мм	Номер сетки	Размер ячейки в свету, мм
010	0,10×0,10	050	0,50×0,50
014	0.14×0.14	190	$1,90 \times 1,90$
018	0,18×0,18	018/06 3	0.18×0.63
020	0.20×0.20	020/080	0.20×0.80
025	$0,25 \times 0,25$	028/040	0.28×0.40
040	$0,40 \times 0,40$	040/063	$0,40 \times 0,63$
Примечание І	! Иирина сетки 1300 мм, д	лина в рулове крат	и ная 1300 мм.

СЕТКИ ТКАНЫЕ

OCT 13-251-84

Таблица 6.13

Номер сетки	Размер ячейки в свету, мм	Живое сечение, %	Масса 1 м³, кг
10	0,60×0,74	39,2	2,00
14	0.36×0.68	33,8	2,13
16	$0,34 \times 0,55$	36,6	1,42
24	0.22×0.41	32,7	1,35

Примечание 1 Ширина до 7500 мм, длина 9—54 м Материал сталь 12X18Н9Т или сталь 12X18Н10Т 2 Обозначение: сетка одинарная из проволоки коррознонной стали (материал) — (размеры в мм) — (количество, шт.)

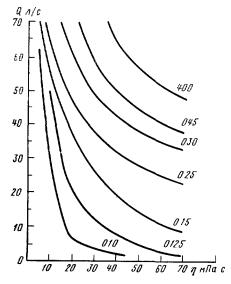


Рис. 6.8. Зависимость пропускной способности вибросита от номера сетки (010—400) и пластической вязкости промывочной жидкости

СЕТКА ДЛЯ ВИБРОСИТ

СТАНДАРТ АНИ

Таблица 6.14

Размер ячейки сетки	Размер ячейки в свету, мкм	Живое сечение, %	Размер ячейки сетки	Размер ячейки в свету, мкм	Живое вечение, %
20×20	838×838	43,6	50×40	292×419	38,3
30×30	541×541	40.8	60×60	234×234	30.5
30×20	465×889	3 9,5	60×40	200×406	31,1
35×12	320×1700	42,0	60×24	200×830	41,5
40×40	381×381	36,0	70×30	178×660	40,3
40×36	381×452	40,5	80×8 0	178×178	31,4
40×30	381×592	42,5	80×40	140×460	35,6
40×20	381×920	3 6,8	100×100	140×140	30,3
50×50	279×279	3 0 ,3	120×120	117×117	30,9

Примечание. Пример обозначения при ваказез 50 × 50 (279 × 279.30,3).

РУКАВА РЕЗИНОВЫЕ ВЫСОКОГО ДАВЛЕНИЯ (ТИПЫ І—ІІІ)

ΓΟCT 6286--73

Таблица 6.15

Внутренний	Нарух	Ради	ус изги	ба, мм	Масса 1 м, кг				
днаметр, мм	I	11	111	I	11	111	I	11	111
25 32 38 50	37 44 50 62	39 46 52 64	46 53 60 73	170 200 250 300	240 280 320 370	300 400 500 630	1,2 1,5 1,8 2,0	1,5 2,2 2,5 3,1	2,7 3,2 3,6 4,3

Продолжение табл. 6.15

		Рабочее динамическое давление, МПа											
Внутренний диаметр, мм		Б			В								
	1	11	111	I	11	III	1	II	111				
25 32 38 50	5,0 4,0 2,5 1,5	7,5 6,0 5,0 2,5	9,0 7,0 6,5 3,0	6,5 4,5 3,0 2,0	9,5 7,5 5,5 3,0	12,0 9,0 7,0 3,5	7,0 5,5 3,5 2,5	12,0 8,5 5,5 3,5	14,0 9,5 7,0 4,0				

Примечания. 1. Типы I, II, III — с одной, двумя и тремя металлическими оплетками соответственно. 2. Группы A, B, B — применение проволоки с разрывным усилием 147, 175 и 200 Н соответственно. 3. Длина рукава 10 м. 4. Обозначение при заказезрукав (тип) — (внутренний диаметр) — (динамическое давление) — (климатическая зона применення по ГОСТ 6283—88).

РУКАВА БУРОВЫЕ ОПЛЕТОЧНЫЕ

ТУ 38-105557--73

Таблица 6.16

	Давле	ние динамиче	ское, МПа	Диам	Диаметр наружный, мм Тип рукава				
Диаметр внутренний, мм		Тип рукан	38						
	I	11	111	I	II	111			
38 50 65 76 100	10 5 10 10 5	15 10 15 15	20 15 20 20	56,6 69,6 91,0 102,0 126,0	57,8 70,8 93,4 104,4 128,4	59,0 73,2 95,8 106,8			

РУКАВА СПЕЦИАЛЬНОГО НАЗНАЧЕНИЯ

фирма «ТАУРУС», ВЕНГРИЯ

Таблица 6.17

Диаме	рр, мм	Рабочее	Macca 1 m.	Осевая	Допустимое наружное			
внутренний	наружный	давлени е, МПа	кр	нагрузка, кН	давление, МПа			
51	105	34,7	17	150	5,0			
	125	69,4	31	200	5,4			
76	140	34,7	27	200	4,0			
	152	55,5	42	250	4,4			
102	159	27,8	32	250	3,0			
	178	45,1	53	300	3,5			
152	211	20,8	53	300	3,0			
	229	34,7	78	350	3,5			
203	262	17,4	72	350	2,5			
	279	27,8	102	400	3,0			

РУКАВА РЕЗИНОВЫЕ НАПОРНО-ВСАСЫВАЮЩИЕ

ΓΟCT 5398--76

Таблица 6.18

Внутренний	Длина	_	N	Magga 1 m, KP						
диаметр, мм	манжеты, мм	Длина рукава, м	БиГ	В	КШвЦ					
50 65 75	100 100 100	2, 3, 4, 6, 9, 10 2, 3, 4, 6, 9, 10 2, 3, 4, 6, 9, 10	2,6 3,5 4,0	1,9 2,3 3,1	2,4 2,8 3,9					

Продолжение табл. 6.18

Внутренний	Длина	_	Macca I m, Kr						
диаметр, мм	Mahжete, MM	Длина рукава, м	виг в кп		КЩиП				
100 125 150	100 150 150	2, 3, 4, 6, 9, 10 2, 3, 4 2, 3, 4	6,0 7,5 8,5	4,5 6,3 8,0	5,5 7,3 9,0				

Примечания. 1. Рабочее давление 0,3; 0,5 или 1 МПа. 2. Давление разрежения — 79,98 кПа. 3. Группы: 1 — всасывающие, 2 — напорно-всасывающие. 4. Классы: Б — для нефтепродуктов, В — для технической воды, Г — для воздуха и других инертных газов, КЩ — для слабых растворов кислот и щелочей, П — для пищевых веществ и питьевой воды. 5. Обозначение при заказе рукав (класс)—(группа)—(внутренний диаметр)—(рабочее давление)—(климат района).

ДРОССЕЛЬНО-ЗАПОРНОЕ УСТРОЙСТВО ДЛЯ ЗАПУСКА БУРОВЫХ НАСОСОВ

ТУ 26-02-528-73, ТУ 26-02-946-82

Таблица 6.19

Шифр	Рабочее	Промывоч	ная жидкость	Диаметр,	Длина,	Macca,
	давлени е, МПа	расход, л/о	плотность, г/см ³	ММ	ММ	KР
ДЗУ-250 ДЗУ-400	25 40	50 50	2,4	338 310	390 525	74 62

ЗАДВИЖКИ С РЕЗИНОВЫМ УПЛОТНЕНИЕМ ДЛЯ ОБВЯЗКИ БУРОВЫХ НАСОСОВ

ТУ 26-02-162---87

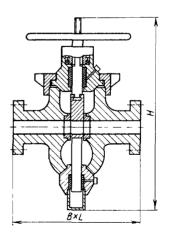


Рис. 6.9. Вадвижна прямоточная

Таблипа 6.20

Шнфр	Условный днаметр проходного отверстия, мм	Рабочее давле- ние, МПа	Длина L, мм	Ширина <i>В</i> , мм	Высота Н, мм	Macca, Kr
3ПР-50/32 3ПРМ-50/40 3ПР-80/32 3ПР-80/40 3ПР-100/32 3ПРМ-100/40	50 50 80 80 100	32 40 32 40 32 40 32 40	300 300 380 460 380 320	194 194 260 260 295 295	460 480 675 675 780 780	42 46 90 96 113 110

Примечания. 1. Плотность промывочной жидкости до 2,8 г/см³ в температурой не более 80°С. 2. Тип соединения задвижек на 32 МПа — хомутовое, на 40 МПа — резьбовое. 3. Гарантийный срок службы 1850 ч.

ДЕГАЗАТОРЫ ВАКУУМНЫЕ

ТУ 41-01-530—85, ТУ 41-01-065—74, ТУ 39-01-08-677—81, ТУ 41-01-084—74 Таблица 6.21

Шифр	Расход жидкости при дегаза- ции, л/с	Давленне разрежения, кПа	Длина, мм	Ширина, мм	Высота, мм	Macca, kr
Д-55	60	53,32	2350	2050	3400	1720
ДВС-П	40	79,98	2690	2220	2020	2850
ДВС-Ш	45	79,98	3000	2600	2500	2800
ДВМ-2	40	53,32	2210	1100	1445	1390

Примечание. Остаточное содержание газа в растворе при дегазации до 2 %.

ГИДРОЦИКЛОНЫ

ОСТ 26-02-643—78, ТУ 26-02-950—82, ТУ 26-02-982—84, ТУ 26-02-1025—86 Таблица 6.22

Шифр	Днаметр улитки Подача раство- ра, л/с		Размер удаляе- мых частиц	Дляна	Ши- рина	Высота	Maeca,
ПГ-45-У2	150	45	>0,8	1200	535	1150	120
ИГ-45М	150	45	>0,06	1730	520	1200	200
ГУР-2-01	150	3	>0,02	1290	750	1160	880

Примечания. 1. Гарантийный ресурс работы конуса при растворе плотностью 1,2 г/см $^3-100$ ч, улитки — 2000 ч. 2. Давление на входе 0,3 МПа. 3. Размеры в мм.

6.7. ПОТЕРИ ДАВЛЕНИЯ В ЭЛЕМЕНТАХ ОБВЯЗКИ БУРИЛЬНОЙ КОЛОННЫ ПОТЕРИ ДАВЛЕНИЯ В БУРИЛЬНЫХ ТРУБАХ ПРИ ТЕЧЕНИИ РАСТВОРОВ

Таблица 6.23

		CBT c	вамкам	я ЗШ				ABT					T	впв			
							,	Цваметр	трубы,	мм							
Ичтен- сивность промыв-	1	14		140		129 147			1	14	15	27	140				
ки, л/ с						•		Голщин	з стенки	, мм						· · · · · · · · · · · · · · · · · · ·	
	10	9	11	10	9	11	9	13	11	9	10	9	10	9	11	10	9
15	0,91	0,75	0,31	0,26	0,24	0,40	0,34	0,31	0,28	0,25	0,59	0,54	0,33	0,30	0,21	0,20	0,19
20	1,54	1,26	0,51	0,41	0,36	0,70	0,58	0,42	0,37	0,32	0,98	0,89	0,55	0,50	0,28	0,26	0,24
25	2,36	1,92	0,76	0,62	0,54	0,99	0,87	0,54	0,49	0,42	1,48	1,33	0,80	0,74	0,41	0,39	0,36
30	3,40	2,77	1,06	0,86	0,75	1,35	1,19	0,77	0,65	0,54	2,13	1,92	1,11	1,02	0,57	0,52	0,49
35	4,63	3,76	1,41	1,13	0,98	1,79	1,59	0,99	0,88	0,75	2,90	2,61	1,50	1,38	0,74	0,69	0,64
40	6,04	4,90	1,84	1,46	1,26	2,25	2,02	1,28	1,15	1,00	3,78	3,40	1,98	1,80	0,95	0,87	0,81
45	7,66	6,21	2,34	1,85	1,60	2,80	2,52	1,55	1,40	1,30	4,79	4,31	2,51	2,28	1,20	1,11	1,02
50	_	-	2,88	2,29	1,97	_		1,85	1,70	1,57	_	,	3,09	2,82	1,48	1,37	1,26
55	_	_	3,48	2,77	2,39	_	_	2,21	2,01	1,86		-	3,74	3,41	1,79	1,65	1,53
60	_	_	4,14	3,29	2,85	_	_	2,70	2,45	2,19			4,45	4,06	2,13	1,97	1,82

Примечание. Потери давления в МПа/1000 м.

🗑 ПОТЕРИ ДАВЛЕНИЯ В БУРИЛЬНЫХ И НАСОСНО-КОМПРЕССОРНЫХ ТРУБАХ ПРИ ТЕЧЕНИИ РАСТВОРОВ

Таблица 6.24

				CBT				AF	ST				нкт			
							Диаз	метр тру	бы, мм							
Интен- сивность промыв- ки, л/с	50	63,5		73		89		93	114	48,3	60	,3	7	3	{	89
KB, 3/0	Толщина стенки, мм															
	5,5	6	7	9	8	9	11	9	10	4	Б	6,5	5,5	7,8	6,5	8,0
3 4 5 6 7 8 10 12 14 16 18 20 22 24 26	3,4 5,8 8,9 12,8 17,4 ————————————————————————————————————	0,74 1,21 1,82 2,55 3,38 4,36 6,78 9,77 — — — — — —	0,58 0,71 1,07 1,50 2,00 2,55 3,86 5,56 — — —	2,3 3,9 6,1 8,7 11,8 15,4 23,8 34,4 ——————————————————————————————————	0,37 0,41 0,45 0,50 0,67 0,85 1,27 1,78 2,35 3,06 3,87 4,78 5,78	0,46 0,55 0,67 0,85 1,04 1,46 2,22 3,16 4,20 5,49 6,95 10,60	0,54 0,68 0,86 1,21 1,61 2,08 3,17 4,49 6,10 7,96 10,00	0,34 0,35 0,36 0,38 0,49 0,62 0,91 1,26 1,65 2,14 2,71 3,35 4,05 4,85 5,70	0,27 0,29 0,40 0,52 0,66 0,81 0,98 1,15 1,36 1,60	1,72 2,85 4,24 6,10 8,30 10,80 16,90 24,40 — — —	0,56 0,90 1,32 1,83 2,50 3,20 4,90 7,20 9,60 12,50	0,80 1,31 1,95 2,70 3,60 4,65 7,30 10,50 14,00 18,40	0,42 0,44 0,57 0,79 1,03 1,30 1,94 2,74 4,80 6,20 7,60 9,20	0,47 0,54 0,80 1,10 1,45 1,83 2,77 3,98 5,40 7,00 8,90 11,00	0,32 0,33 0,34 0,35 0,40 0,50 0,74 1,02 1,34 1,74 2,20 2,71 3,30 3,90 4,60	0,34 0,38 0,38 0,49 0,62 0,91 1,26 1,68 2,14 2,7 3,38 4,08 4,88 5,70

Примечание Потери давления в МПа/1000 м.

потери давления в убт при течении растворов

Таблица 6.25

Интенсивность	Днаметр канала, мм												
промывки, л/с	68	75	80	90	100	127							
15	0,32	0,17	0,12	0,07	0,05	0,02							
20	0,57	0,29	0,21	0,12	0,07	0,03							
25	0,89	0,46	0,33	0,18	0,11	0,04							
30	1,28	0,66	0,48	0,26	0,16	0,06							
35	1,74	0,90	0,65	0,36	0,21	0,08							
40	2,27	1,17	0,85	0,47	0,28	0,10							
45	2,88	1,48	1,07	0,60	0,35	0,13							
50			1,32	0,74	0,43	0,16							
55	_	_	1,60	0,89	0,53	0,19							
60			1,91	1,06	0,63	0,23							

ПОТЕРИ ДАВЛЕНИЯ В ШАРОШЕЧНЫХ ДОЛОТАХ С ЦЕНТРАЛЬНОЙ ПРОМЫВКОЙ ПРИ ТЕЧЕНИИ РАСТВОРОВ

Таблица 6.26

Интенсивность	Днаметр долота, мм											
промывки, л/с	161	190	216	243—269	295	394						
15	0,85	0,71	0,40	0,11	0,06	0,03						
20	1,50	1,26	0,71	0,20	0,10	0,06						
25	2,35	1,96	1,11	0,32	0,16	0,09						
30	3,38	2,84	1,60	0,45	0,23	0,13						
35	_	3,86	2,17	0,62	0,31	0,18						
40	_		2,84	0,81	0,41	0,23						
45			3,59	1,02	0,52	0,29						
50				1,26	0,64	0,36						
55				1,53	0,78	0,44						
60		_		1,82	0,93	0,52						

Примечание. Потери давления в МПа.

Таблица 6.27

							д	иаметр	насадок	, мм						
Интенсивность		4,5			6			7			8			9	1	10
промывки, л/с								Число	насадок							
	1	2	3	1	2	3	1	2	3	1	2	3	2	3	2	3
2	9,2	2,3	1,0	3,0	0,7	0,3	1,6	0,4	0,2	0,9	-		_	_		
3	21,0	5,0	2,3	6,6	1,7	0,7	3,6	0,9	0,4	2,1	0,5	0,2	0,3	0,1	_	_
4	37,0	9,3	4,1	11,8	3,0	1,3	6,4	1,6	0,7	3,7	0,9	0,4	0,6	0,2	0,4	0,2
5	57,0	14,3	6,4	18,4	4,6	2,0	9,8	2,5	1,1	5,8	1,5	0,6	0,9	0,4	0,6	0,3
6	_	20,7	9,2	26,3	6,6	2,9	14,2	3,6	1,6	8,4	2,1	0,9	1,3	0,6	0,9	0,4
7	_	28,5	12,7	36,0	9,0	4,0	19,3	4,8	2,2	11,4	2,8	1,3	1,8	0,8	1,2	0,5
8	_	59,0	16,5	48,0	11,8	5,2	25,5	6,4	2,8	14,8	3,7	1,6	2,4	1,0	1,5	0,7
9			21,0		15,0	6,6	32,0	8,0	3,6	18,7	4,7	2,1	3,0	1,3	1,9	0,9
10			25,7		18,4	8,2	39,6	10,0	4,4	23,4	5,8	2,6	3,6	1,6	2,4	1,1
11	_	_	31,0	_	22,3	10,0	_	12,0	5,3	28,0	7,0	3,1	4,4	2,0	2,9	1,3
12	_	_	_	_	26,7	12,0		14,3	6,3	_	8,4	3,7	5,2	2,3	3,4	1,5
13	_	_	-	_	31,2	14,0	_	16,8	7,5		9,8	4,4	6,1	2,7	4,0	1,8
14	_	_	_	-	36,0	16,0		19,4	8,7		11,4	5,1	7,1	3,2	4,7	2,1

Таблица 6.28

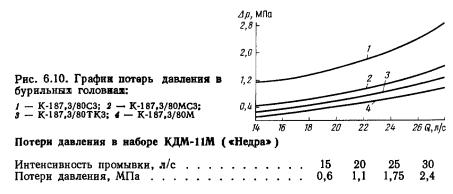
							д	наметр	насадок	, мм						
Интенсивность	1	0	1	1	1	2	1	3	1	4		15	1	6	1	18
промывки, л/с								Число	насадо	ĸ						_
	2	3	2	3	2	3	2	3	2	3	2	3	2	3	2	3
10	2,4	1,1	1,6	0,7	1,2	0,5	_		_			_	_	_	_	_
15	5,4	2,4	3,7	1,6	2,6	1,1	1,9	0,8	1,4	0,6	 	_	_			_
20	9,5	4,2	6,4	2,8	4,6	2,0	3,3	1,5	2,5	1,1	1,9	0,8	1,4	0,6	_	_
25	14,8	6,6	10,2	4,5	7,2	3,2	5,2	2,3	3,9	1,7	2,9	1,3	2,3	1,0	1,4	0,6
30	_	9,5	14,6	6,5	10,2	4,6	7,6	3,3	5,6	2,5	4,2	1,9	3,3	1,4	2,0	0,9
35	_			8,9	_	6,2	10,2	4,6	7,6	3,4	5,7	3,6	4,4	2,0	2,8	1,2
40	_		_		_	8,2	_	5,9	10,0	4,4	7,5	3,3	5,8	2,6	3,6	1,6
45	_	_	_		_		_	7,5		5,6	9,5	4,2	7,4	3,3	4,6	2,0
50	_	-	-		_	_	_	9,2	_	6,9	·	5,2	9,0	4,0	5,7	2,5
55		-	-	_	_	_	_			8,4	_	6,3	_	4,8	6,9	3,1
60	_	_	_		_	_	_	_	_	_		7,5	_	5,8	8,1	3,6
								<u> </u>			\					

2

ПОТЕРИ ДАВЛЕНИЯ В КОЛЬЦЕВОМ ПРОСТРАНСТВЕ МЕЖДУ СТЕНКАМИ СКВАЖИНЫ И БУРИЛЬНЫМИ ТРУБАМИ ПРИ ТЕЧЕНИИ РАСТВОРОВ

Таблица 6.29

	Диаметр долота, мм												
Интенсивность	161		190			2	16		295				
промывки, л/с		Днаметр труб, мм											
	114	114	127	140	114	127	140	147	147				
10	0,35	0,17	0,21	0,28	0,13								
ĨŠ	0,70	0,17	0,24	0,45	0,13	0,15	0.18	0,20	0,1				
20	1,17	0,26	0,40	0,74	0,13	0,15	0,22	0,26	0,1				
25	1,72	0,38	0,59	1,10	0,16	0,21	0,32	0,38	0,1				
30	2,37	0,52	0,81	1,52	0,21	0,29	0,44	0,53	0,1				
35	3,22	0,68	1,06	1,99	0,28	0,38	0,58	0,69	0,1				
40	_	0,86	1,34	2,58	0,35	0,48	0,73	0,87	0,1				
45	1 —	í —	l —	_	0,43	0,59	0,90	1,07	0,1				
50				-			—		0,1				
60		—		 	-		l —	—	0,2				


Примечания. 1. Потери давления в МПа/1000 м. 2. При диаметрах долота 295 мм и труб 127 и 140 мм потери давления составляют 0,1 МПа/1000 м.

потери давления между стенками скважины и убт при течении растворов

Таблица 6.30

	Днаметр долота, мм											
Интенсивность	16	i1	190	216	295							
промывки, л/е			Диаметр У	БТ, мм								
	108	146	146	178	178	203						
10	0,03	0,72										
15	0,05	1,49	0,06	0,08	0,01	0,0						
20	0,09	2,60	0,10	0,13	0,01	0,0						
25	<u> </u>	4,06	0,15	0,19	0,01	0,0						
30	_	5,84	0,20	0,27	0,01	0,0						
35	_	7,95	0,26	0,35	0,01	0,02						
40	-	J		0,46	0,01	0,02						
45		 		0,58	0,01	0,03						
50	_		-	_	0,02	0,03						
60		l —	_		0,02	0,05						

Примечание. Потери давления в МПа/100 м.

При определении расчетной величины потерь давления необходимо соответствующие табличные значения (см. табл. 6.23—6.28) увеличить пропорционально плотности промывочной жидкости.

7. РАЗОБЩЕНИЕ ПЛАСТОВ

7.1. ОБСАДНЫЕ ТРУБЫ

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ОБСАДНЫХ ТРУБ

TY 14-3-245-74, TY 14-3-714-78, TY 14-3-381-75,

ТУ 14-3-537—76,

TY 14-3-766—78, TY 14-3-570—77, TY 14-3-655—78, TY 14-3-656—78, TY 14-3-1188—83,

ТУ 14-3-1417-86, ТУ 14-3-1272-84

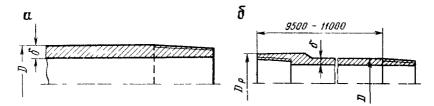


Рис. 7.1. Обсадные трубы резьбовые: a — муфтовые; δ — раструбные

Таблица 7.1

Диаметр	Толщина	Диаметр	вакр	Резьба угленного рофиля	отт	M, OTTF	T60-5P		
трубы <i>D</i>	стенки о	шаблона	D _M	q	D _M	q	D _p	q	
114,3	6,4 7,4 8,6	98,4 96,4 94,0	133	17,4 19,9 22,8					
127,0	6,4 7,5 9,2	111,0 108,8 105,5	146	19,7 22,7 27,3	_	<u> </u>	_		
139,7	7,0 7,7 9,2 10,5	122,6 121,1 118,2 115,5	159	23,7 25,9 30,3 34,4	159	23,6 25,8 30,2 34,3	 154	30,0 34,1	
146,0	7,0 7,7 8,5 9,5 10,7	129,0 127,5 126,0 124,0 121,5	166	24,8 27,0 29,6 32,8 36,5	166	24,7 26,9 29,5 32,7 36,4	-		
168,3	7,3 8,9 10,6 12,1	150,5 147,2 143,9 141,0	188	30,0 36,1 42,2 47,5	188	36,1 42,2 47,5			

Продолжение табл. 7.1

Диаметр	Толщина	Диаметр	вакру	езьба гленного офиля	ОТТ	м, оттг	ТБ	O-5P
трубы D	стенки 8	шаблона	$D_{\mathbf{M}}$	q	D _M	q	Dp	q
219,1	8,9 10,2 11,4 12,7 14,2	198,0 195,6 193,0 190,5 187,6	245	47,8 53,8 60,0 66,1 73,0	249	54,3 60,5 66,6 73,5		— — — —
244,5	8,9 10,0 11,1 12,0 13,8	222,6 220,4 218,4 216,5 212,8	270	53,5 59,6 65,2 70,3 80,3	270	60,2 65,8 70,9 80,9		
273,1	8,9 10,2 11,4 12,6 13,8	251,3 248,8 246,2 243,9 241,4	299	59,8 67,8 75,6 82,7 90,4	299	59,8 67,8 75,6 82,7		1111
298,5	8,5 9,5 11,1 12,4 14,8	277,5 275,5 272,3 269,5 264,6	324	62,6 70,0 80,4 89,7 105,6	324	70,0 80,4 89,7		
323,9	9,5 11,0 12,4 14,0	300,9 297,9 295,0 291,9	351	75,8 87,0 97,4 109,1	351	75,8 87,0 97,4 —	_	_ _ _ _
351,0	9,0 10,0 11,0 12,0	328,0 326,0 324,0 322,0	376	78,5 86,7 94,8 102,9	_	_ _ _ _	_	
377,0	9,0 10,0 11,0 12,0	354,0 352,0 350,0 348,0	402	84,5 93,3 102,0 110,8	_		_	<u>-</u>
426,0	10,0 11,0 12,0	401,0 399,0 397,0	451	106,1 116,0 125,9	_		_	

Примечания. 1. Размеры в мм. 2 $D_{
m M}$ и $D_{
m p}$ — диаметры муфты и раструба; q — масса 1 м с учетом муфты (раструба), рассчитанная из условия длины трубы 11 м, кг.

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЗАРУБЕЖНЫХ ОБСАДНЫХ ТРУБ

Таблица 7.2

Диаметр	Толщина	Днаметр	Масса в уч	иетом муфты	Диаметр
трубы, мм	стенки, мм	шаблона, мм	фунт/фут	кг/м	нормальной муфты, мм
114,3	5,7 6,4	99,7 98,4	10,5 11,6	15,6 17,3	123,5
	7,4 8,6	96,4 94,0	13,5 15,1	20,1 22,5	126,0
	9,7 10,2	91,8 90,7	16,9 17,7	25,1 26,3	129,7
127,0	6,4 7,5 9,2 10,7 11,1 12,1	111,0 108,8 105,4 102,4 101,6 99.5 98,4	13,0 15,0 18,0 20,8 21,4 23,2 24,1	19,3 22,3 26,8 31,0 31,8 34,5 35,9	141,3
139,7	7,0 7,7 9,2 10,5	122,6 121,1 118,2 115,4	15,5 17,0 20,0 23,0	23,1 25,3 29,8 34,2	153,7
168,3	7,3 8,9 10,6 12,1	150,5 147,2 143,9 141,0	20,0 24,0 28,0 32,0	29,8 35,7 41,7 47,6	187,7
177,8	8,1 9,2 10,4 11,5 12,7 13,7 15,0 16,3	158,5 156,2 153,9 151,6 149,3 147,2 144,7 142,1	23,0 26,0 29,0 32,0 35,0 38,0 41,0 44,0	34,2 38,7 43,1 47,6 52,1 56,5 61,0 65,5	194,5
193,7	8,3 9,5 10,9 12,7 14,3 15,1 15,9	173,8 171,9 168,7 165,1 161,9 160,3 158,7	26,4 29,7 33,7 39,0 42,8 45,3 47,1	39,3 44,2 50,1 58,0 63,7 67,4 70,1	216,0
219,1	8,9 10,2 11,4 12,7 14,2 15,1	198,0 195,6 193,0 190,5 187,6 185,7	32,0 36,0 40,0 44,0 49,0 52,0	47,6 53,6 59,5 65,5 72,9 77,4	244,5
244,5	8,9 10,0 11,1 12,0 13,8	222,6 220,4 218,4 216,5 212,8	36,0 40,0 43,5 47,0 53,5	53,6 59,5 64,7 70,0 79,6	269,9

Диаметр	Толщина	Диаметр	Масса с уч	етом муфты	Диаметр
трубы, мм	стенки, мм	шаблона, мм	фунт/фут	кг/м	нормальной муфты, мм
244,5	15,1	210,3	58,4	86,9	269,9
	15,9 19,1	208,8 202,4	61,1 71,8	90,9 106,8	
273,0	10,2 11,4 12,6 13,8 15,1	248,8 246,2 243,9 241,4 238,8	45,5 51,0 55,5 60,7 65,7	67,7 75,9 82,6 90,3 97,8	298,4
298,5	12,4 13,6	269,4 267,4	60,0 65,0	89,3 96,7	323,9
339,7	9,7 10,9 12,2 13,1 14,7	316,5 313,9 311,4 309,6 306,3	54,5 61,0 68,0 72,0 80,7	81,1 90,8 101,2 107,1 120,1	365,1
406,4	9,5 11,1 12,6	382,6 379,4 376,5	65,0 75,0 84,0	96,7 111,6 125,0	431,8
473,1	11,1	446,2	87,5	130,2	508,0
508,0	11,1 12,7 16,1	480,9 477,8 470,9	94,0 106,5 133,0	140,0 158,5 198,0	533,4
762,0	25,4 38,1	711,0 685,0	310,0 460,0	491,0 720,0	804,0

МАРКИРОВКА ЗАРУБЕЖНЫХ ОБСАДНЫХ ТРУБ

Последовательность маркировки: название изготовителя — монограмма АНИ — диаметр трубы — масса 1 фута (толщина стенки) — марка стали — способ изготовления трубы — тип стали — длина трубы — общая масса трубы — тип резьбы.

Для труб, поставляемых по договору с СССР, вместо массы 1 фута указывается толщина стенки. Размерность в этом случае приведена в метрической системе мер.

Марки стали: K, J, C, N, P. Цифра после буквы означает минимальное значение предела текучести материала в тыс. фунтов на квадратный дюйм. Буква S — сероводородустойчивая марка стали.

Способ изготовления: S — бесшовные, E — электросварные. Тип стали: B — бессемеровская, BO — кислородно-конвенторная.

Тип резьбы: закругленного профиля с короткой и длинной резьбами — CSG и LCSG соответственно, упорная — «Батресс», «ВАМ», «Экстрем-Лайн».

Если трубы опрессованы давлением, наносят слово «Тэстэд», если труба проверена неразрушающими методами контроля — буквы SRI.

Цвет краски для маркировки труб из стали марки: K-55 — зеленый, J-55 — светло-зеленый, C-75 — голубой, N-80 — красный, C-90 — пурпурный, C-95 — коричневый, P-110 — белый. На трубе около муфты одним из указанных выше цветов наносят поясок. Трубы из фирменных сталей имеют пояски: AC-80 — красный с голубой полосой; AC-85 — красный с голубой и белой полосами; AC-90 — красный с двумя голубыми полосами; AC-95 — коричневый с голубой полосой; SM-80S — голубая полоса на муфте, окрашенной в красный цвет; SM-90S — голубая полоса на муфте оранжевого цвета; SM-95S — голубая полоса на муфте коричневого цвета.

Буквы АС — означают фирму «Ниппон Кокан Корпорейшн»,

SM — фирму «Сумитомо Метал».

Сероводородустойчивые стали для обсадных труб (цветовая маркировка не обязательна):

фирма «Далмайн» (Италия) — D-80SG, D-90SG, D-90SSG,

D-95SSG, D-95SG;

фирма «Маннесман векс» (ФРГ) — MW-80S, MW-85SS, MW-90SS, MW-95SS.

ДАВЛЕНИЯ ОПРЕССОВКИ ОБСАДНЫХ ТРУБ (ИСПОЛНЕНИЕ Б) НА ПОВЕРХНОСТИ

ΓΟCT 632--80

Таблица 7.3

Диаметр	Толщина		Груп	па прочност	и материал	гериала трубы			
трубы, мм	стенки, мм	Д	К	E	л	М	P		
114,3	6,4 7,4 8,6	33,3 38,7 45,1	44,1 51,0 58,9	49,5 56,9 66,2	 67,7 79,0	 78,5 91,2	96,1 111,8		
127,0	6,4 7,5 9,2	29,9 35,3 43,2	39,7 46,1 56,9	44,6 52,0 63,8	61,8 76,0	71,6 87,8	87,8 107,9		
139,7	6,2 7,0 7,7 9,2 10,5	26,5 29,9 32,9 39,2 44,6	34,8 39,2 43,2 51,5 58,9	39,2 44,2 48,6 57,9 66,3	57,9 69,2 79,0	66,9 80,0 91,2	82,1 98,1 111,8		
146,1	6,5 7,0 7,7 8,5 9,5 10,7	26,5 28,4 31,4 34,8 38,7 43,6	34,8 37,8 41,2 45,6 51,0 57,4	39,2 42,2 46,6 51,5 57,9 64,7	50,0 55,4 61,3 68,2 77,0	 64,3 70,6 79,0 89,3	79,0 86,8 97,1 109,4		

Диаметр	Толщина		Групі	ла прочност	и материал	а трубы	
трубы, мм	стенки, мм	Д	К	Е	Л	м	P
168,3	7,3	26,0	33,8	38,3	45,6		_
	8,9	31,4	41,7	46,6	55,4	64,3	79,0
	10,6	37,8	49,5	55,4	66,2	76,5	93,7
	12,1	42,7	56,4	63,3	75,5	87,3	106,9
177,8	6,9	23,0	30,4	34,3	-		_
	8,1	27,0	35,8	40,2	47,6	_	
	9,2	30,9	40,7	45,6	54,4	62,8	77,0
	10,4	34,8	46,1	51,5	61,3	71,1	87,3
	11,5	38,7	50,5	57,0	67,7	78,5	96,1
	12,7	42,7	55,9	62,8	75,0	86,8	106,4
193,7	7,6	23,5	30,9	34,8	_	_	
	8,3	25,5	33,8	37,8	45,1		
	9,5	29,4	38,2	43,2	51,5	59,4	73,1
	10,9	33,4	44,1	49,6	58,9	68,2	83,9
	12,7	39,2	51,5	57,9	68,7	79,5	97,6
219,1	7,7	21,1	27,5	30,9		_	
	8,9	24,0	31,9	35,8	42,7	49,1	
	10,2	27,9	36,3	41,2	49,1	56,4	69,2
	11,4	30,9	40,7	46,1	51,4	63,3	77,5
	12,7	34,3	45,6	51,0	60,8	70,1	86,3
	14,2	38,7	51,0	57,4	68,2	78,5	96,6
244,5	7,9	14,2	19,1	21,6		_	
	8,9	16,2	21,6	24,0	28,4	32,9	
	10,0	18,1	24,0	27,0	31,9	37,3	45,6
	11,1	20,1	26,5	29,9	35,8	41,2	50,5
	12,0	22,1	28,9	32,4	38,7	44,6	54,9
	13,8	25,0	33,4	37,3	44,1	51,5	63,3
273,1	7,1	11,8	15,2	17,2	_		_
	8,9	14,7	19,1	21,6	25,5	29,4	_
	10,2	16,7	22,1	24,5	29,4	33,8	41,7
	11,4	18,6	24,5	27,5	32,9	37,8	46,6
	12,6	20,6	27,0	30,4	36,3	42,2	51,5
	13,8	22,6	29,9	33,4	39,7	46,1	56,4

Іродолжение табл. 7.3

Диаметр	Толщина		Групп	та прочност	и материал	а трубы	
трубы, мм	стенки, мм	Д	K	Е	л	М	P
298,5	8,5	12,7	16,7	18,6	_	_	-
	9,5	14,2	18,6	21,1	25,0	28,9	35,3
	11,1	16,7	22,1	24,5	29,4	33,8	41,7
	12,4	18,6	24,5	27,5	32,4	37,8	46,6
	14,8	22,1	28,9	32,9	38,7	45,1	55,4
323,9	9,5	13,2	17,2	19,6	_		-
	11,0	15,2	20,1	22,6	26,5	30,9	37,8
	12,4	17,1	22,6	25,5	29,9	34,8	42,7
	14,0	19,1	25,5	28,4	33,8	39,2	48,0
339,7	9,7	12,8	16,7	18,6	ĺ _	_	_
	10,9	14,2	18,6	21,1	-	-	-
	12,2	16,2	21,1	23,5	-		_
	13,1	17,2	22,6	25,5	_		-
	14,0	18,6	24,0	27,4	_	_	-
351,0	9,0	11,3	15,2		_	_	_
	10,0	12,7	16,7	–	_	<u> </u>	-
	11,0	14,2	18,6	-	-		-
	12,0	15,2	20,1	_	-		-
377,0	9,0	10,8	14,2	_	_	_	-
	10,0	11,8	15,7	-	_	-	-
	11,0	13,2	17,2	-	-	_	_
	12,0	14,2	18,6	<u> </u>	-	_	-
406,4	9,5	10,3	13,7	-	_	_	-
	11,1	12,2	16,2	-	_	-	-
	12,6	13,7	18,1	_	-	-	-
426,0	10,0	10,3	13,7	_	_	_	-
	11,0	11,8	15,2	_	_	-	
	12,0	12,7	16,7	_	-	-	-
473,1	11,1	10,3	13,7	_	_	-	-
508,0	11,1	9,8	12,7	_	_	_	_

508,0 | 11,1 | 9,8 | 12,7 | — | — | — | — Примечания. 1. Давления опрессовки в МПа. 2. Для труб группы прочности Д с короткой треугольной резьбой испытательное давление не должно превышать 24,5 МПа.

прочностная характеристика обсадных труб с резьбой треугольного профиля

Таблица 7.4

Диаметр трубы,	Толщина	См	инающее д	авление, М	Па	Внутренне кает пред	ел текучес	, при котор ти материа МПа	ом возни- ла трубы,	Страгивающая нагрузка, к Н			
труоы,	стенки, мм	д	Е	л	М	д	E	л	М	д	Е	л	M
114.2	6.4	07.0	25.0	20 N	41.7	97.1	E4.0	64.0	74.9	500	725	860	1000
114,3	6,4	27,0	35,2	38,9	41,7	37,1	54,0	64,2	74,2				
	7,4	34,2	46,2	52,2	57,3	42,9	62,4	74,2	85,8	600	870	1040	1200
	8,6	42,4	59,0	68,0	76,1	50,0	72,5	86,2	99,8	720	1050	1240	1440
	10,2		_	88,1	100,2	_	_	102,2	118,3	_	_	1520	1750
127,0	6,4	22,3	28,1	30,6	32,4	33,4	48,6	57,7	66,8	560	820	970	1130
	7,5	29,5	39,0	43,5	47,1	39,2	56,9	67,6	78,3	680	1000	1190	1380
	9,2	40,3	55,7	63,9	71,1	48,1	69,8	83,0	96,0	880	1280	1520	1760
	10,2	49,4	69,7	1,18	91,7	56,0	81,2	96,5	111,7	1050	1520	1800	2090
139,7	7,0	22,1	27,8	30,2	31,9	33,2	48,3	57,4	66,4	690	1010	1200	1390
	7,7	26,3	34,1	37,5	40,3	36,6	53,1	63,1	73,1	780	1140	1350	1570
	9,2	35,1	47,5	53,9	59,3	43,7	63,5	75,5	87,3	970	1410	1680	1940
	10,5	42,4	58,9	67,9	75,9	49,9	72,4	86,1	99,7	1130	1640	1950	2250
146,0	7,0	20,3	25,2	27,1	28,6	31,8	46,2	54,9	63,5	730	1070	1260	1460
	7,7	24,3	31,1	34,0	36,3	35,0	50,8	60,4	69,9	820	1200	1430	1660
	8,5	28,8	37,9	42,1	45,6	38,6	56,1	66,6	77,1	930	1350	1610	1860
					1		}						

Б Продолжение табл. 7.4

Днаметр	Толщина		Сминающее	давление, <i>1</i>	Vi∏a			е, при кото кучести мат , МПа		Страгивающая нагрузка, к Н			
трубы <u>.</u> мм	стенки, ММ	д	Е	л	м	д	E	л	м	д	Е	л	м
	9,5	34,4	46,6	52,6	57,8	43,1	62,7	74,5	86,2	1060	1540	1830	2130
	10,7	40,9	56,6	65,1	72,6	48,6	70,6	83,9	97,1	1210	1760	2100	2440
168,3	7,3	16,6	19,9			28,8	41,8			880	1280		_
	8,9	24,4	31,3	34,2	36,6	3 5,1	51,0	60,6	70,1	1130	1640	1950	2250
	10,6	32,7	44,0	49,5	54,2	41,8	60,7	72,1	83,5	1380	2010	2380	2760
	12,1	39,9	55,0	63,0	70,2	47,7	69,3	82,3	95,4	1600	2320	2760	3190
219,1	8,9	14,4	17,0	17,8	18,5	27,0	39,2	46,5	53,8	1470	2130	2540	2930
	10,2	19,2	23,5	25,3	26,6	30,9	44,9	53,3	61,7	1720	2500	2970	3440
	11,4	23,7	30,2	33,0	35,1	34,5	50,2	59,6	69,0	1960	2840	3380	3910
	12,7	28,6	37,6	41,8	45,2	38,5	55,9	66,4	76,8	2200	3200	3800	4410
	14,2	_	46,3	52,3	57,4	-	62,4	74,3	85,9		3620	4300	4980
244,5	8,9	10,0	11,7	12,3	12,8	24,2	35,1	41,7	48,2	1630	2370	2810	3250
	10,0	12,9	15,6	16,7	17,5	27,1	39,4	46,8	54,2	1870	2710	3230	3740
	11,1	16,2	20,0	21,7	22,8	30,1	43,7	52,0	60,2	2110	3070	3650	4210
	12,0	18,8	23,8	26,0	27,7	32,5	47,3	56,3	65,1	2300	3350	3980	4610
	13,8	24,4	31,9	35,5	38,5	37,4	54,4	64,7	74,9	2680	3900	4640	5370
273,0	8,9	7,6	8,8	9,2	9,5	21,7	31,5	37,3	43,2	1660	2400	2860	3310
	10,2	10,6	12,4	13,1	13,8	24,8	36,0	42,8	49,5	1940	2820	33 50	3880

	1	;	;	! :	(1	1	. 1	,	1 1	. 1	. 1	
	11,4	13,5	16,4	17,5	18,4	27,7	40,3	47,8	55,4	2200	3200	3810	4410
	12,6	16,7	20,7	22,4	23,8	30,6	44,5	52,8	61,2	2470	3590	4260	4930
	13,8	19,9	25,4	27,8	29,8	33,5	48,7	57,9	67,0	2720	3960	4710	5450
	15,1		30,6	34,0	36,7		53,3	63,3	73,3		4370	5190	6000
298,5	8,5	5,5	_		_	18,9	_		_	1680			_
	9,5	7,3				21,2	 	_	_	1910			
	11,1	10,5	12,3	13,0	13,6	24,7	35,9	42,6	49,3	2290	3330	3960	4590
	12,4	13,4	16,2	17,3	18,2	27,5	40,1	47,6	55,1	2600	3770	4490	5190
	14,8	_	24,3	26,7	28,4		47,8	56,8	65,8	-	4590	5450	6300
323,9	9,5	5,9	6,7	7,0	_	19,5	28,2	33,6	l –	2040	2960	3520	_
	11,0	8,4	9,8	10,3	10,7	22,5	32,7	38,9	45,0	2410	3510	4160	4820
	12,4	11,2	13,2	14,1	14,7	25,4	36,9	43,9	50,8	2760	4010	4770	5520
	14,0	14,6	17,8	19,2	20,2	28,7	41,7	49,5	57,3	3160	4590	5450	6310
351,0	9,0	3,8	-	_		17,0	_	-	-	1700		-	
	10,0	5,0	5,8	6,1	_	18,9	27,4	32,6	_	1950	2840	3370	
	11,0	6,4	7,3	7,8	8,1	20,8	30,2	35,9	41,6	2200	3200	3800	4400
	12,0	7,8	9,2	9,8	10,3	22,7	32,9	39,2	45,3	2460	3570	4240	4910
377,0	9,0	3,2		_	-	15,9		_	-	1780	-		_
	10,0	4,2	4,8			17,6	25,6	_		2060	2980	—	-
	11,0	5,4	6,2	6,5	_	19,4	28,1	33,4	 	2320	3370	4000	_
	12,0	6,6	7,6	8,1	_	21,2	30,7	36,5	_	2580	3750	4460	_
426,0	10,0	3,0	-		_	15,6	_	_	 	2220	_	_	
	11,0	3,9	4,4	_		17,1	24,9	_	_	2510	3650		
	12,0	4,9	5,6	-	—	18,7	27,1	l –	l –	2800	4070	_	-

Примечание. Трубы поставляются с плюсовым допуском по толщине отенки, поэтому фактическая масса 1 м может быть больше сприведенной до 2 %.

ත .

БЮЛЛЕТЕНЬ 5СА АНИ, КАТАЛОГИ ФИРМ «ВАЛЛОУРЕК», «СУМИТОМО МЕТАЛ», «НИППОН КОКАН КОРПОРЕЙШН»

Таблица 7.5

Днаметр	Толщина		нощее не, МПа	Допус (<i>l</i>	стимое внут И.Па) для	гренн ее даг труб с рез	вление ъбой	Допу- қа	стимая раст (кН) для т	ягивающая рубсрезь	нагруз- бой
труб, мм	стенки, мм	дамисия	ic, miliu	кру	глой	∢Батресс	», «BAM»	кру	глой	«Батресс	», «BAM»
		N 80	P 110	N 80	P 110	N 80	P 110	N 80	P 110	N 80	P 110
114,3	5,7 6,4 7,4 8,6 9,7 10,2	34,0 43,8 58,9 78,0 —	52,1 73,6 98,5 117,3 123,5	53,6 62,2 73,7 —	73,7 85,6 99,4 —	48,1 53,6 62,2 67,4 —	73,7 85,6 92,6 112,1 118,2	990 1200 1440 —	1250 1500 1800 —	1070 1190 1360 1570	1640 1870 2160 2400 2520
127,0	6,4 7,5 9,2 10,7 11,1 12,1 12,7	35,4 50,0 72,3 85,1 87,7 91,4 98,4	40,2 60,9 92,7 117,1 120,0 125,6 135,2	48,9 57,2 69,9 72,0 73,9 73,9 73,9	67,2 78,7 96,1 100,0 101,5 101,5	48,9 57,2 67,8 67,8 67,8 67,8 67,8	67,2 78,7 93,0 93,0 93,0 93,0 93,0	1120 1380 1760 2100 2180 2400 2510	1400 1730 2200 2620 2730 3000 3150	1340 1560 1880 2160 2230 2390 2390	1840 2140 2580 2900 2980 2980 2980
139,7	7,0 7,7 9,2 10,5	34,4 43,3 60,9 77,0	38,7 51,4 76,4 100,1	48,3 53,4 63,4 68,2	66,4 73,4 87,2 93,7	48,3 53,4 61,5 61,5	66,4 73,4 84,4 84,4	1360 1550 1900 2230	1740 1980 2440 2860	1600 1760 2050 2360	2200 2420 2850 3150
168,3	7,3 8,9 10,6 12,1	24,0 39,7 56,3 71,1	27,8 46,3 69,9 91,0	42,0 51,3 60,7 69,3	57,7 70,5 83,6 95,2	42,0 51,3 60,7 67,1	57,7 70,5 83,6 92,2	1660 2130 2600 3000	2220 2850 3460 4000	2040 2460 2900 3260	2800 3390 3970 4480

177,8	8,1 9,2 10,4 11,5 12,7 13,7 15,0 16,3	26,4 37,3 48,4 59,3 70,2 78,6	30,7 42,8 58,7 74,2 89,8 104,2 117,1 126,0	43,8 49,9 56,3 63,1 63,8 63,8	60,1 68,7 77,4 85,9 86,8 86,8 —	43,8 49,9 56,3 57,8 57,8 	60,1 68,7 77,4 79,4 79,4 79,4 79,4	1970 2310 2650 2980 3300 3300	2620 3080 3530 3980 4420 4420	2370 2680 3000 3300 3620 3830 —	3250 3690 4130 4550 4790 4790 4790
193,7	8,3 9,5 10,9 12,7 14,3 15,1	23,4 33,1 45,2 60,7 73,8 78,6 82,1	27,1 36,8 54,2 76,2 95,1 105,1 113,0	41,5 47,5 54,4 63,3 70,4 71,6 71,6	57,1 65,3 74,8 87,0 96,9 98,5 98,5	41,5 47,5 54,4 63,3 66,8 66,8 66,8	57,1 65,3 74,8 87,0 91,9 91,9	2170 2550 2990 3540 4020 4280 4500	2900 3420 4000 4740 5380 5120 6020	2670 3020 3450 3970 4440 4670 4890	3670 4170 4750 5460 6100 6430 6720
219,1	8,9 10,2 11,4 12,7 14,2 15,1	21,0 28,2 38,1 47,9 59,1 66,6	23,6 32,4 43,9 57,9 74,0 84,7	39,4 44,7 50,3 56,0 62,3 66,6	54,2 61,6 69,3 76,9 85,7 91,6	39,4 44,7 50,3 56,0 62,3 66,6	54,2 61,6 69,3 76,9 85,7 91,6	2620 3050 3500 3940 4430 4760	3510 4090 4690 5270 5920 6370	3250 3670 4110 4540 5000 5340	4450 5050 5650 6240 5900 7340
244,5	8,9 10,0 11,1 12,0 13,8 15,1 15,9	16,3 21,3 26,3 32,8 45,6 54,4 —	17,1 24,0 30,5 36,6 54,6 87,2 94,7 106,0	35,3 39,6 43,7 47,4 54,6 59,7 —	48,5 54,5 59,9 65,1 75,1 82,0 86,2 103,4	35,3 39,6 43,7 47,4 54,6 59,7	48,5 54,5 59,9 65,1 75,1 82,0 86,2 103,4	2850 3280 3670 4020 4720 5180	3830 4390 4310 5390 6330 6950 7330 8850	3640 4060 4450 4820 5520 6000	5000 5600 6140 6590 7590 8260 8650 9660
273,0	10,2 11,4	17,1 22,2	18,0 25,3	35,9 40,4	49,1 55,5	35,9 40,4	49,1 55,5	3040 3600	4210 4800	4630 5180	6370 7080

₩ Продолжение табл. 7.5

Інаметр руб. мм	Толщина					треннее да руб с резъ		Допустимая растягивающая на- грузка (кН) для труб с резьбой				
труб, мм	стенки, мм	дависи		кру	глой	«Батресс	», «BAM»	кру	глой	«Батресс», «ВАМ»		
		N 80	P 110	N 80	P 110	N 80	P 110	N 80	P 110	N 80	P 110	
	12,6	27,7	31,9	44,4	61,1	44,4	61,1	3970	5050	5670	7760	
	13,8	35,6	40,5	49,0	67,3	49,0	67,3	5070	5940	6220	8500	
	15,1	43,5	51,6	53,5	73,5	53,5	73,5	5580	6540	6760	9240	
298,5	12,4	21,9	24,9	40,2	55,2	40,2	55,2	4100	5520	6150	8350	
	13,6	26,7	30,9	43,9	60,3	43,9	60,9	4530	6100	6700	9070	
339,7	9,7	7,8	7,8	27,4	37,7	27,4	37,7	3260	4400	5510	7250	
	10,9	11,5	11,5	31,0	42,7	31,0	42,7	3770	5060	6220	8160	
	12,2	15,6	16,1	34,6	47,6	34,6	47,6	4280	5770	6900	9080	
	13,1	18,4	19,8	37,1	51,0	37,1	51,0	4620	6240	7380	9700	
	14,0	21,4	_	39,7	_		_	_	_	_	–	
	14,7	26,0	27,6	41,8	57,5	41,8	57,5	5290	7120	8290	11000	
	15,4	26,7	_	43,9	-	_	-	_		_	-	
	18,3	40,7	-	46,0	_	-	_	_	_	_	-	

прочностная характеристика сероводородустойчивых обсадных труб

КАТАЛОГИ ФИРМ «СУМИТОМО МЕТАЛ», «НИППОН КОКАН КОРПОРЕЙШН»

Таблица 7.6

			Сминаюц	цее давле	ние. МП	а		Допуст	имое вн	утренне	е давле					
Диаметр	Толщина			4-V M				кругл	юго про	филя		у	порной	(∢Батре	cc», «BA	AM»)
трубы, мм	стенки, мм	C-75	AC-80, 80S	AC-85	AC-90, 90S	C-95, AC-95, 95S	C-75	AC-80, 80S	AC-85	AC-90, 90S	C-95, AC-95, 95S	C-75	AC-80, 80S	AC-85	AC-90, 90S	C 95, AC-95,
114,3	6,4	42,3	43,7	45,4	47,1	48,3	50,3	53,6	57,0	60,3	63,7	50,3	53,6	57,0	60,3	63,7
	7,4	56,3	58,9	61,5	64,3	66,5	58,3	62,2	66,1	70,0	73,8	58,3	62,2	66,1	70,0	73,
	8,6	73,0	76,4	80,4	84,3	87,9	69,1	72,3	76,8	81,4	85,8	63,2	67,5	71,7	76,0	80,
127,0	7,5	48,0	50,0	51,9	54,1	55,8	53,6	57,2	60,7	64,2	67,8	53,6	57,2	60,7	64,2	67,
	9,2	69,0	72,3	75,9	79,5	82,8	65,5	69,9	74,3	78,6	83,0	64,0	68,3	72,6	76,9	80,
	11,1	82,2	88,0	93,5	99,0	104,2	69,3	74,5	79,2	83,9	87,6	64,0	68,3	72,6	76,9	80,
	12,1	86,4	95,4	101,3	107,3	109,4	69,3	74,5	79,2	83,9	87,6	64,0	68,3	72,6	76,9	80,
	12,7	92,3	99,3	105,4	111,7	116,8	69,3	74,5	79,2	83,9	87,6	64,0	68,3	72,6	76,9	80,
139,7	7,0	33,5	_	_	_	37,0			_	-		45,2	_	_	_	57,
	7,7	41,9	43,3	44,9	46,4	47,8	50,0	53,4	56,7	60,0	63,4	50,0	53,4	56,7	60,0	63,
	9,2	58,2	60,9	63,2	66,5	69,0	59,3	63,4	67,3	71,3	75,2	57,6	62,0	65,8	69,8	72,
	10,5	72,1	76,9	81,4	85,3	89,1	63,9	68,2	72,4	76,6	80,9	57,6	62,0	65,8	69,8	72,
168,3	8,9	38,4	39,7	41,0	42,3	43,4	48,1	51,3	54,5	57,4	60,9	48,1	51,3	54,5	57,4	60,9

39

,								Допусти	мое вн	утренне	е давле	ение (МПа) для труб с резьбой					
Диаметр	Толщина		минающ	(ее давле	ние, МП	и		кругл	ого про	филя		yı	зорной	(«Батре	ee», «BA	M»)	
диаметр трубы, мм	голщина стенки, мм	C-75	AC-80, 80S	AC-85	AC-90, 90S	C-95, AC-95, 95S	C-75	AC-80, 80S	Ж-85	AC-90, 90S	C-95, AC-95, 95S	C-75	AC-80, 80S	AC-85	AC-90, 90S	C-95, AC-95, 95S	
177,8	10,6	53,9	56,3	58,9	61,2	63,5	57,0	60,7	64,5	68,4	72,1	57,0	60,7	64,5	68,4	72,1	
	12,1	67,8	71,1	74,6	78,1	81,4	64,8	69,3	73,6	77,9	82,2	62,9	67,7	71,9	76,2	79,6	
	8,1	26,0	26,4	26,7	27,8	28,6	40,9	43,8	46,5	49,1	51,9	40,9	43,8	46,5	49,1	51,9	
	9,2	36,2	37,3	38,4	39,5	40,5	46,8	49,9	53,0	56,1	59,3	46,8	49,9	53,0	56,1	59,3	
	10,4	46,6	48,4	50,3	52,2	54,0	52,8	56,3	59,8	63,3	66,8	52,8	56,3	59,8	63,3	66,8	
	11,5	56,8	59,3	61,9	64,6	67,1	58,6	62,5	66,4	70,2	74,2	54,2	58,3	62,0	65,6	68,6	
	12,7	67,0	70,2	73,6	77,0	80,2	59,2	63,8	67,6	71,6	74,9	54,2	58,3	62,0	65,6	68,6	
193,7	13,7	73,7	78,6	83,5	88,3	92,5	59,2	63,8	67,6	71,6	74,9	54,2	58,3	62,0	65,6	68,6	
	8,3	22,7	23,4	24,2	24,9	25,6	38,9	41,5	44,1	46,8	49,3	38,9	41,5	44,1	46,8	49,3	
	9,5	32,2	33,1	33,8	34,7	35,3	44,4	47,5	50,5	53,5	56,4	44,4	47,5	50,5	53,5	56,4	
	10,9	43,6	45,2	47,0	48,6	50,0	51,0	54,5	57,9	61,2	64,6	51,0	54,5	57,9	61,2	64,6	
	12,7	58,2	60,7	63,5	66,3	68,8	54,9	63,3	67,2	71,2	75,1	54,9	63,3	67,2	71,2	75,1	
	14,3	70,0	74,5	78,2	81,9	84,7	66,1	71,2	75,6	80,1	83,6	62,7	67,5	71,7	75,9	79,4	
	15,1	73,7	79,3	84,3	89,2	93,4	66,5	72,3	76,9	81,4	88,6	62,7	67,5	71,7	75,9	79,4	
	15,9	77,1	82,9	88,1	93,3	97,6	66,5	72,3	76,9	81,4	88,6	62,7	67,5	71,7	75,9	79,4	
219,1	10,2	27,7	28,3	28,8	29,2	30,0	42,0	44,7	47,6	50,3	53,2	42,0	44,8	47,6	50,3	53,2	

	ſ	11,4	36,9	38,1	39,3	40,4	41,4	47,2	50,3	53,5	56,7	59,7	47,2	50,3	53,5	56,7	59,7
		12,7	46,0	47,9	49,7	51,6	53,3	52,5	56,0	59,4	63,0	66,5	52,5	56,0	59,4	63,0	66,5
		14,2	56,5	59,1	61,7	64,5	66,8	58,5	62,3	66,3	70,1	74,1	58,5	62,3	66,3	70,1	74,1
	1	15,1	63,3	66,6	69,7	72,8	7 5,9	62,4	66,6	70,7	75,0	79,1	62,4	66,6	70,7	75,0	79,1
	244,5	و,8،	16,0	_		_	16,9	33,1			_	41,9	33,1			_	41,9
		10,0	20,5	21,3	21,9	22,2	23,0	37,2	39,6	42,1	44,5	47,0	37,2	39,6	42,1	44,5	47,0
		11,1	25,8	26,3	26,8	27,7	28,4	40,9	43,6	46,3	49,1	51,8	40,9	43,6	46,3	49,1	51,8
		12,0	31,9	32,8	33,6	34,4	35,0	44,4	47,4	50,3	53,2	56,2	44,4	47,4	50,3	53,2	56,2
		13,8	43,9	45,6	47,4	49,0	50,5	51,2	54,7	58,1	61,5	64,8	51,2	54,7	58,1	61,5	64,8
		15,1	52,2				61,2	—	_		_	`	55,9	—		-	70,9
	273,1	11,4	21,4	22,2	22,8	23,4	24,0	37,9	40,4	43,0	45,4	48,0	37,9	40,4	43,0	45,4	48,0
		12,6	27,2	27,7	28,2	28,7	29,6	41,6	44,5	47,2	50,0	52,8	41,6	44,5	47,2	50,0	52,8
		13,8	34,4	35,6	36,6	37,7	38,5	45,9	49,0	52,0	55,0	58,1	45,9	49,0	52,0	55,0	58,1
		15,1	41,8	43,5	45,0	46,6	48,0	50,1	53,4	56,8	60,1	63,4	50,1	53,4	56,8	60,1	63,4
	298,5	12,4	21,2	21,9	22,5	23,1	23,7	37,7	40,2	42,7	45,2	47,7	37,7	40,2	42,7	45,2	47,7
		13,6	26,1	26,7	27,1	28,0	28,8	41,1	43,9	46,6	49,4	52,1	41,1	43,9	46,6	49,4	52,1
	339,7	9,7	7,8	-	_		7,8	25,7	_	-		32,6	25,7		_		32,6
		10,9	11,4	11,5	-	11,5	11,5	29,1		_		36,9	29,1	31,0	—	34,9	36,9
		12,2	15,3	15,5	15,8	16,0	16,1	32,5	34,6	36,8	39,0	41,2	32,5	34,6	36,8	39,0	41,2
		13,1	17,9	18,4	18,8	19,1	19,4	34,7	37,1	39,4	41,7	44,0	34,7	37,1	39,4	41,7	44,0
		14,0	20,6	—			-	37,2							—	_	-
		14,7	23,0	23,9	24,6	25,4	26,1	39,2	41,9	44,5	47,1	49,7	39,2	41,9	44,5	47,1	49,7
		15,4	26,3	-	_		-	41,2	_	-	-	—	 	_	—		
		18,3	39,4			-	-	43,3	_	-	-	-	-	_	-	-	-
141																	

ДОПУСТИМАЯ РАСТЯГИВАЮЩАЯ НАГРУЗКА (кН) ДЛЯ СЕРОВОДОРОДУСТОЙЧИВЫХ ОБСАДНЫХ ТРУБ КАТАЛОГИ ФИРМ «СУМИТОМО МЕТАЛ», «НИППОН КОКАН КОРПОРЕЙШН», «ВАЛЛОУРЕК»

Таблица 7.7

		•	Kр	углая резьб	5a		y	порная рез	ьба («Батре	cc», «BAM»)
Диаметр трубы, мм	Толщина стенки, мм	C-75	AC-80, 80S	AC-85	AC-90, 90S	C-95, AC-95, 95S	C-75	AC-80, 80S	AC-85	AC 90, 90S	C-95, AC 95, 95S
114,3	6.4 7,4 8,6	930 1150 1370	990 1200 1440	990 1200 1440	1020 1230 1480	1040 1260 1510	1110 1280 1470	1190 1360 1570	1260 1450 1670	1330 1530 1760	1400 1630 1860
127,0	7,5 9,2 11,1 12,1 12,7	1310 1670 2070 2220 2350	1380 1760 2180 2400 2510	1380 1760 2180 2400 2510	1420 1810 2240 2470 2600	1450 1850 2290 2520 2640	1160 1750 2090 2260 2270	1560 1880 2230 2390 2390	1650 1990 2360 2390 2390	1750 2110 2460 2460 2460	1850 2220 2500 2500 2500 2500
139,7	7,0 7,7 9,2 10,5	1280 1450 1790 2100	1550 1900 2230	1580 1950 2280	1680 2070 2400	1460 1680 2070 2400	1510 1650 1940 2210	1760 2070 2360	1880 2200 2510		1910 2100 2450 2650
168,3	8,9 10,6 12,1	2020 2450 2840	2140 2610 3010	2230 2710 3140	2330 2850 3290	2420 2950 3420	2310 2710 3050	2470 2890 3260	2620 3070 3470	2770 3250 3670	2930 3430 3880
177,8	8,1 9,2 10,4 11,5 12,7 13,7	1850 2170 2490 2810 3120 3360	1960 2300 2650 2990 3310 3620	2040 2400 2760 3120 3460 3770	2150 2530 2900 3260 3640 3930	2250 2640 3030 3420 3800 4140	2220 2510 2820 3100 3390 3650	2360 2680 3000 3310 3620 3890	2520 2850 3190 3520 3850 3890	2480 3020 3380 3730 4010 4010	2810 3190 3570 3930 4010 4010

193,	7	8,3 9,5 10,9 12,7 14,3 15,1 15,9	2050 2410 2820 3340 3790 4020 4240	2180 2560 3000 3550 4020 4280 4500	2270 2670 3130 3700 4200 4460 4700	2380 2800 3280 3880 4410 4690 4930	2490 2930 3430 4060 4610 4900 5150	2490 2840 3190 3730 4160 4380 4580	2670 3030 3460 3980 4440 4670 4890	2840 3230 3670 4230 4710 4970 5190	3010 3420 3890 4470 4990 5260 5500	3170 3590 4100 4720 5270 5550 5780
219,	1	10,2 11,4 12,7 14,2 15,1	2880 3300 3710 4170 4480	3060 3500 3940 4430 4760	3200 3660 4120 4630 4970	3350 3840 4320 4860 5220	3500 4020 4520 5080 5460	3440 3880 4250 4710 5010	3670 4110 4540 5020 5340	3910 4380 4820 5340 5670	4130 4620 5110 5650 6000	4340 4860 5360 5900 6300
244,	5	8,9 10,0 11,1 12,0 13,8 15,1	2660 3080 3440 3790 4440 4880	3270 3670 4020 4720	3430 3830 4200 4930	3600 4030 4420 5180	3280 3770 4220 4630 5420 5960	3420 3810 4180 4510 5120 5620	4070 4470 4830 5530	4330 4750 5130 5870	4580 5020 5430 6220	4270 4770 5230 5660 6480 7030
273,	1	11,4 12,6 13,8 15,1	3360 3740 4780 5250	3580 3980 4430 4870	3740 4170 4640 5100	3930 4380 4880 5360	4120 4590 5100 5610	4860 5320 5830 6330	5170 5670 6220 6750	5500 6030 6600 7170	5820 6380 6990 7590	6020 6600 7220 7850
298,	5	12,4 13,6	3870 4260	4110 4530	4300 4740	4520 4990	4740 5230	5770 6270	6160 6690	6530 7110	6860 7460	7100 7720
339,	7	9,7 10,9 12,2 13,1 14,7	3060 3540 4020 4350 4970	4280 4620 5290	4490 4850 5540	 4720 5100 5840	3770 4370 4950 5300 6120	5170 5840 6480 6920 7780	6200 6870 7390 8290	7260 7760 8710	6830 7590 8110 9100	6280 7080 7870 8400 9450
143			<u> </u>	<u> </u>	<u>L</u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>l</u>	<u> </u>	<u> </u>

7.2. РАСЧЕТ ОБСАДНЫХ КОЛОНН

Обсадные колонны должны удовлетворять условиям прочности от сминающих нагрузок (в случае уменьшения давления внутри колонны при газоводонефтепроявлении или эксплуатации скважины) и от внутренних (при опрессовке, работах по интенсификации пласта и т. п.). Распределение наружного и внутреннего давлений между граничными точками принимается линейным. При спуске колонн секциями рассчитывают каждую из них. При определении наружных и внутренних давлений в наклонных скважинах ($\alpha > 5^{\circ}$) все отметки глубин граничных точек необходимо пересчитывать на вертикальную проекцию траектории ствола.

І. НАРУЖНЫЕ ДАВЛЕНИЯ

1. На устье скважины

$$(p_{\mathtt{H}})_{\mathtt{y}}=0.$$

2. На верхней границе подъема цементного раствора

$$(p_{\rm H})_h = 10^{-2} \rho_{\rm p} h.$$

3. У башмака колонны (секции)

$$(p_{\rm H})_L = 10^{-2} [\rho_{\rm p} h + \rho_{\rm H} (z-h)],$$

где $\rho_{\rm p}$ — средняя плотность бурового раствора за колонной в нецементируемом интервале, г/см³; $\rho_{\rm q}$ — средняя плотность цементного раствора, г/см³; z — глубина спуска колонны (секции), м; h — расстояние от устья скважины до цементного раствора за трубами, м.

4. В изученных районах допускается

$$(\rho_{\rm H})_L=(\rho_{\rm HJ})_L,$$

где $(p_{\pi\pi})_L$ — пластовое давление на глубине L, МПа.

5. В первых двух-трех разведочных скважинах и при кольцевых диаметральных зазорах 30 мм и менее

$$(p_{\rm H})_{\rm L} = 10^{-2} \rho_{\rm D} L.$$

6. В интервале залегания пород, склонных к текучести,

$$(p_{\rm H})_{\rm z} = 10^{-2} \rho_{\rm H} z$$

где ρ_{π} — средняя плотность горных пород, залегающих выше пород, склонных к текучести (в первых трех разведочных скважинах допускается $\rho_{\pi}=2,3$ г/см³); z — расстояние от устья до рассматриваемой глубины, м.

За интервал расчета принимают мощность пласта, увеличенную на 50 м (по 25 м выше кровли и ниже подошвы).

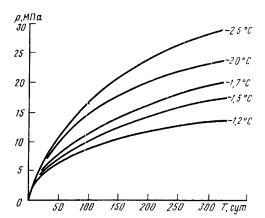


Рис. 7.2. Рост давления в замкнутом объеме с течением времени при температуре многолетнемерзлых пород (ММП) от —1,2 °C до —2,5 °C

7. В интервалах залегания многолетних мерзлых пород, в случае замерзания воды или бурового раствора за колонной обсадных труб, давления определяют по номограмме (рис. 7.2).

II. ВНУТРЕННИЕ ДАВЛЕНИЯ ПРИ ПРОВОДКЕ И ЭКСПЛУАТАЦИИ СКВАЖИНЫ

- 1. Для эксплуатационных колонн пластовое давление в поздний период эксплуатации устанавливается службой по эксплуатации данного месторождения:
 - а) для газовых скважин

$$p_y = (p_B)_L = (p_{III})_L = 0.5 \div 1;$$

б) для нефтяных скважин

$$p_y = (p_B)_H = 0;$$
 $(p_B)_L = 10^{-2} \rho_B (L - H),$

где p_y — давление внутри колонны на устье, МПа; ρ_B — средняя плотность жидкости внутри колонны, г/см³; H — расстояние от устья скважины до уровня жидкости в колонне, м.

- 2. Для эксплуатационных колонн при испытании скважины (устье загерметизировано):
 - а) для газовых скважин

$$p_{y}(p_{\pi\pi})_{l} \frac{2-s}{2+s}, \qquad s=10^{-4} \rho_{r} l;$$

б) для газоконденсатных, нефтяных и водяных скважин

$$p_{y} = (p_{u\pi})_{l} - 10^{-2} \rho_{\Phi} l$$
,

где $(p_{nn})_l$ — давление в пласте газа, находящегося на глубине l, МПа; ρ_r — относительная плотность газа по воздуху; ρ_{Φ} — плотность пластового флюида, г/см³.

3. Для промежуточных колонн внутреннее давление рассчитывают из условия поступления пластового флюида в промывочную жидкость при бурении под следующую обсадную колонну.

Для всех газовых скважин глубиной до 1500 м, а также для нефтяных и водяных скважин глубиной до 1500 м с пластовым давлением выше гидростатического внутреннее давление рассчитывают из условия полного замещения промывочной жидкости пластовым флюидом:

а) для газовых скважин:

при закрытом устье

$$p_{y} = (p_{\pi\pi})_{l} \frac{2-s}{2+s}, \qquad s = 10^{-4} \rho_{r} l;$$

при открытом устье

$$p_{\mathbf{v}}=0, \qquad (p_{\mathbf{B}})_{\mathbf{z}}=0.$$

б) для нефтяных, водяных и газоконденсатных скважин: при закрытом превенторе

$$p_{y} = (p_{un})_{l} - 10^{-2} \rho_{\Phi} l;$$

при открытом устье

$$p_{y} = 0;$$
 $(p_{B})_{z} = 10^{-2} \rho_{\Phi} z.$

Для нефтяных и водяных скважин глубиной до 1500 м с нормальным пластовым давлением или глубиной свыше 1500 м с любым пластовым давлением степень облегчения промывочной жидкости устанавливается для каждого месторождения объединением (управлением); на первых двух-трех скважинах на месторождении степень облегчения принимается равной 40 %:

при закрытом устье

$$p_{\rm v} = (p_{\rm min})_l - 10^{-2} \rho_0 l;$$

при открытом устье

$$p_y = 0$$
, $(p_B)_z = 10^{-2} \rho_0 z$,

где ρ_0 — средняя плотность промывочной жидкости внутри колонны с учетом поступления в нее пластового флюида во время нефтеводопроявления ($\rho_0 \leqslant 1 \text{ г/см}^3$).

Для газовых и газоконденсатных скважин глубиной более 1500 м замещение промывочной жидкости пластовым флюидом необходимо принимать от полной до половины глубины скважины:

при закрытом устье

$$(p_{\rm B})_H = (p_{\rm III})_l - 10^{-2} \rho_{\rm B} (l-H),$$
 $p_{\rm Y} = (p_{\rm B})_H \frac{2-s_H}{2+s_H}, \qquad S_H = 10^{-4} \rho_{\rm r} H;$

при открытом устье

$$p_{\rm v} = (p_{\rm B})_H = 0;$$
 $(p_{\rm B})_z = 10^{-2} \rho_{\rm B} (z - H)_t$

где H — глубина опорожнения скважины, м; $(p_{\scriptscriptstyle B})_H$ — давление внутри колонны на глубине H при газопроявлении, МПа.

ІІІ. ИЗБЫТОЧНЫЕ НАРУЖНЫЕ ДАВЛЕНИЯ

$$(p_{\rm H})_{\rm M36} = (p_{\rm H} - p_{\rm B})(1-k) \leqslant \frac{[p_{\rm CM}]}{m},$$

где $[p_{\rm cm}]$ — допустимое давление смятия труб (подбирают по технической характеристике); m — коэффициент запаса прочности на смятие $m=1\div 1,3$ для интервалов перфорации ± 50 м, во всех остальных случаях m=1; для зарубежных труб m=1,125); k — коэффициент разгрузки цементного кольца (для интервалов пластичных пород k=0).

Наружные и внутренние давления принимают в расчете для одних и тех же граничных точек. По построенной графическим методом эпюре избыточных давлений подбирают обсадные трубы, удовлетворяющие критерию прочности на смятие. Внутренние давления принимают в этом случае при открытом устье.

IV. ВНУТРЕННИЕ ДАВЛЕНИЯ ПРИ ОПРЕССОВКАХ

На верхнюю трубу любой секции необходимо создать давление при опрессовке

$$(p_{\text{B. omp}})_z = 1.1 (p_{\text{B}})_z$$

где $(p_{\rm B})_z$ — внутреннее давление в трубах на глубине z, рассчитанное согласно п. II (определяют аналитически или по эпюре) при закрытом устье, МПа.

Давление на устье колонны при опрессовке любой ее секции с верхней границей на глубине 2

$$(\rho_{\text{omp}})_y = 1.1 (\rho_B)_z = 10^{-2} \rho_H z,$$

где $\rho_{\text{ж}}$ — плотность жидкости, применяющейся при опрессовке, r/cm^3 .

В нагнетательных скважинах величина ρ_y устанавливается геологической службой.

Давление у башмака любой секции колонны труб длиной l_i при опрессовке по секциям

$$(p_{\text{B. omp}})_l = 1.1 (p_{\text{B}})_z + 10^{-2} p_{\text{H}} l_i = (p_{\text{omp}})_y + 10^{-2} p_{\text{H}} (z + l_i).$$

По определенным значениям $(p_{\mathtt{B. onp}})$ и $(p_{\mathtt{B. onp}})_l$ графическим методом строят эпюру внутренних давлений при опрессовке Избыточные внутренние давления при опрессовке

$$(p_{\rm B})_{\rm M30} = (p_{\rm B.\ outp} - p_{\rm H})(1-k) \leqslant [p_{\rm B}]/n,$$

где $[p_B]$ — внутреннее давление, при котором напряжения в теле трубы достигают предела текучести (подбирают по технической характеристике); n — коэффициент запаса прочности на внутреннее давление (для труб диаметром до 219 мм n=1,15; при диаметре свыше 219 мм n=1,52; для зарубежных труб n=1,1).

По избыточным внутренним давлениям подбирают обсадные трубы, удовлетворяющие критерию прочности на внутренние давления.

V. ПРОВЕРКА КОЛОННЫ НА СТРАГИВАНИЕ РЕЗЬБ ПРИ СПУСКЕ

Подобранную компоновку обсадной колонны проверяют на прочность при спуске:

$$10 \sum (q_i l_i) \leqslant P_{\rm exp} / n_{\rm exp}$$

где q_i — масса 1 м обсадных труб в спускаемой i-й секции, кг; l_i — длина спускаемой i-й секции, м; $P_{\rm crp}$ — допустимая нагрузка на страгивание резьб для труб в проверяемом сечении (по технической характеристике); $n_{\rm crp}$ — коэффициент запаса прочности на страгивание резьб (для труб с трапецеидальной резьбой $n_{\rm crp}$ = 1,8; для труб с резьбой закругленного профиля диаметром до 168 мм и длиной колонны до 3000 м $n_{\rm crp}$ = 1,15, длиной свыше 3000 м $n_{\rm crp}$ = 1,3; диаметром 178—245 мм и длиной до 1500 м $n_{\rm crp}$ = 1,3, свыше 1500 м $n_{\rm crp}$ = 1,45; диаметром 273—324 мм — соответственно 1,45 и 1,6; диаметром свыше 324 мм — соответственно 1,6 и 1,75; для зарубежных труб $n_{\rm crp}$ = 1,6).

В наклонных скважинах ($\alpha \gg 10^\circ$) необходимо учитывать снижение прочности резьбовых соединений с резьбой закругленного профиля в зависимости от градиента пространственного искривления ствола и группы прочности стали спускаемых обсадных труб. Коэффициенты запаса прочности для наклонных скважин приведены на рис. 7.3.

Для труб с резьбой типа ОТТМ, ОТТГ, «Батресс», «ВАМ» в наклонных скважинах

$$10 \sum (q_i l_i) \leqslant (P_{\text{crp}} - P_{\text{mar}})/n_{\text{crp}},$$

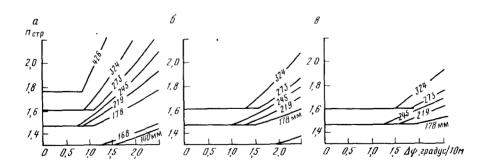


Рис. 7.3. Необходимые коэффициенты запаса прочности на страгивание резьб $(n_{\text{стр}})$ обсадных труб диаметром 140-426 мм групп прочности Д (a), E (б) и Л (в) при креплении наклонных скважин

где $P_{\text{изг}}$ — дополнительная растягивающая нагрузка, вызванная изгибом колонны, кH,

$$P_{\text{map}} = 232 D_{\text{H}} q \Delta \psi$$
;

 $D_{\rm H}$ — наружный диаметр обсадной трубы, см; q — масса 1 м трубы, кг; $\Delta \psi$ — градиент пространственного искривления ствола, градус/10 м.

VI. ОСОБЕННОСТИ РАСЧЕТА ОБСАДНЫХ КОЛОНН ДЛЯ СКВАЖИН, СОДЕРЖАЩИХ СЕРОВОДОРОД

Методика расчета обсадных колонн для скважин, содержащих сероводород, аналогична приведенной выше. Но в зависимости от парциального давления газа и температуры резко снижается несущая способность материала, так как различные стали имеют различную стойкость к сульфидному коррозионному растрескиванию под напряжением (СКРН).

Коэффициенты запаса прочности:

$$m_s = \frac{m}{k_t}$$
, $n_s = \frac{n}{k_t k_s}$, $n_{ctps} = \frac{n_{ctp}}{k_t k_s}$,

где k_t — коэффициент снижения прочности от воздействия температуры,

$$k_t = 1 - 0.07 \frac{t_z - 25}{75}$$
;

 k_s — коэффициент снижения несущей способности материала труб при парциальном давлении газа более 0,01 МПа (значение k_s приведено в табл. 7.8; при парциальном давлении газа 0,001 МПа

Таблица 7.8

_		Температур	оа флюида, °С	
Группа прочности стали	20	40	60	> 80
K-55, J-55	0,75	0,75	0,75	0,75
C-75 II N-80	$0,75 \\ 0,55$	0,75 0,65	0,75 0,75	0,75
80	0,75	0,75	0,75	0,75
C-95 P-105, P-110	0,35 0,20	0,50 0,35	0,75 0,55	0,75 0,75
SM-80S, D-80SG	0,80	0,80	0,80	0,80
6M-90S, D-90SG 6M-95S, D-95SG	0,80 0,80	0,80 0,85	0,80 0,85	0,80 0,85
SM-85SS, D-95SSG	0,85	0,90	0,90	0,90
SM-90SS, D-90SSG SM-95TS	0,85	0,90	0,90	0,90
SM-110T	0,75 0,45	0,80 0,50	0,85 0,60	0,85 0,75

и менее табличное значение k_s необходимо увеличить на 0,05); t_z — средняя температура в скважине для расчетного интервала z, °C.

Значения коэффициентов m, n, $n_{\text{стр}}$ приведены выше. Парциальное давление газа (МПа) равно произведению давления флюида в системе (МПа) на объемное содержание газа во флюиде (доли единицы).

Коэффициенты снижения несущей способности материала труб k_s в среде H_2 S при парциальном давлении более 0,01 МПа привелены в табл. 7.8.

7.3. ИСПЫТАНИЯ СКВАЖИН НА ГЕРМЕТИЧНОСТЬ

Метод опрессовки. Все промежуточные колонны и кондукторы опрессовывают при заполнении их жидкостью, применявшейся при продавке тампонирующей смеси (допускается замена ее водой), эксплуатационные колонны — при заполнении их водой, а приустьевой части — воздухом. В чисто нефтяных скважинах заполнение устьевой части воздухом необязательно.

Давление на устье при опрессовке любой секции колонны на глубине z

$$(p_{\text{ond}})_y = 1, 1 (p_B)_z - 10^{-2} \rho_H z$$

где $(p_{\rm B})_{\rm z}$ — внутреннее давление в трубах на глубине ${\it z}$ при загерметизированном устье в случае газонефтеводопроявления (для промежуточных колонн) или возникающее при испытании или проведении ремонтных работ в скважине (для эксплуатационных колонн), МПа; $\rho_{\rm m}$ — плотность промывочной жидкости, применяющейся при опрессовке, ${\it r}$ /см³.

Давление опрессовки верхней секции (z = 0)

$$\rho_{\text{B}} = \rho_{\text{y}}, \qquad (\rho_{\text{omp}})_{\text{y}} = 1.1 \rho_{\text{y}} \gg \rho_{\text{min}}.$$

Диаметр труб, мм 426—377 351—273 245—219 194—178 168 146—140 127—114 p_{\min} , МПа . . 5 6 7 7,5 9 10 12

Значение $(p_{\rm B})_{\rm z}$ определяют согласно п. II разд. 7.2. В общем виде

$$(p_{\rm B})_z = p_{\rm min} - 10^{-2} \rho_0 (l-z),$$

где $\rho_{\rm nn}$ — пластовое давление на глубине l, МПа; ρ_0 — средневзвешенная плотность промывочной жидкости или пластового флюида при нефтегазоводопроявлении в интервале глубин от z до l, $r/{\rm cm}^{8}$.

Если при поступлении пластового флюида в промывочную жидкость ее плотность ρ_0 становится менее 1 г/см³, то колонну необходимо проверить на прочность по внутреннему избыточному давлению, возникающему в момент опрессовки:

$$\frac{[p_{\rm B}]_z}{1,05n_1} \gg [(p_{\rm oup})_y + 10^{-2} \rho_{\rm m} z - p_{\rm H})_z] (1-k),$$

где $[p_{\rm B}]_z$ — внутреннее давление, при котором напряжения в теле трубы, расположенной на глубине z, достигают предела текучести, МПа; n_1 — коэффициент запаса прочности, равный 1,1 для труб диаметром 114—219 мм и 1,45 для труб диаметром 245—426 мм.

Если трубы не удовлетворяют условию неравенства, то опрессовку проводят поинтервально с установкой цементных мостов (или пакеров) на расчетных глубинах.

Давление опрессовки цементного кольца промежуточной колонны после разбуривания башмака и углубления на 1—3 м:

$$0.95 p_{\text{nop}} - 10^{-2} \rho_{\text{m}} L \gg p_{\text{opp}} \gg 1.05 (p_{\text{b}})_{\text{L}} - 10^{-2} \rho_{\text{m}} L$$

где $p_{\text{пог}}$ — давление начала поглощения пород, залегающих у башмака колонны, МПа; L — глубина нахождения башмака опрессовываемой колонны, м.

Если $p_{\text{опр}} < 0$, то опрессовку не проводят. При поглощении жидкости в процессе опрессовки проводят дополнительное цементирование под давлением (исправительное цементирование) с последующей опрессовкой.

Давления гидроиспытания труб $p_{\text{г. неп}}$, спускаемых на глубине z, на поверхности

$$\frac{[p_{\rm B}]_z}{n_1} \gg p_{\rm r.\; HCH} \gg 1.05 \cdot 1.1 \, [(p_{\rm B})_z - (p_{\rm H})_z] \, (1-k) \gg p_{\rm min}$$

где $(p_{\rm H})_z$ — наружное давление, действующее на трубы на глубине z (определяется согласно п. I разд. 7.2).

Все трубы одного типоразмера подвергают гидроиспытанию на поверхности на одинаковое давление.

Способ снижения уровня. Уровень в скважине должен быть ниже на 40—50 м того уровня, при котором предполагается производить вызов притока из объекта, но не менее H_{\min} .

Глубина объекта, м . . . <500 500—1000 1000—1500 1500—2000 2000
$$H_{\min}$$
, м 400 500 650 800 1000

В скважинах, заполненных перед цементированием промывочной жидкостью плотностью 1,4 г/см³ и выше, вместо испытания колонны способом снижения уровня заменяют промывочную жидкость в колонне водой.

7.4. РАСЧЕТ НАТЯЖЕНИЯ ОБСАДНОЙ КОЛОННЫ

Силу натяжения колонны $Q_{\rm H}$, которая в процессе испытания (эксплуатации) подвергается нагреву или охлаждению и воздействию внутреннего давления, рассчитывают по одной из следующих формул:

 а) в процессе испытания (эксплуатации) колонна по всей длине находится в растянутом состоянии:

$$Q_0 \leqslant Q_H \geqslant Q_0 + P_1 - P_2 + P_3;$$

б) в процессе испытания (эксплуатации) нижняя часть колонны находится в сжатом состоянии:

$$Q_0 \leqslant Q_H \geqslant Q_0 + P_1 - P_2 + P_3 + M_2 - M_3;$$

в) условия работы неизвестны:

$$Q_{\rm H}=Q_{\rm 0}$$
,

где Q_0 — вес незацементированной части колонны, H; P_1 — сила, возникающая в результате нагрева (охлаждения) труб, H; P_2 — сила, возникающая в результате воздействия на трубы внутреннего избыточного давления, H; P_3 — сила, возникающая в результате воздействия на трубы разности внешнего и внутреннего гидростатического давлений флюида (газа), H; M_2 — момент от сил давления, действующих на внутреннюю боковую поверхность трубы, $H \cdot M$, M_3 — момент от сил давления, действующих на внешнюю боковую поверхность искривленной трубы, $H \cdot M$.

После преобразования формулы принимают вид:

a)
$$Q_0 \ll Q_H \gg Q_0 + 240 F_{cp} \Delta t - 47 p_y d^2 + 0.235 h (D^2 \rho_p - d^2 \rho_p^2);$$

6)
$$Q_0 \leqslant Q_H \gg Q_0 + 240 F_{cp} \Delta t + 31 \rho_y d^2 - 0.545 h (D^2 \rho_p - d^2 \rho_B)$$
,

где $F_{\rm cp}$ — средняя площадь сечения труб, см²; Δt — средняя температура нагрева труб в процессе испытания (эксплуатации), при охлаждении — знак минус; $\rho_{\rm y}$ — давление на устье скважины в процессе испытания (эксплуатации), МПа; d, D — внутренний, наружный и средние диаметры труб в незацементированном интервале, см; h — длина незацементированной части колонны, м; $\rho_{\rm p}$ — плотность бурового раствора, г/см³; $\rho_{\rm B}$ — плотность флюида (газа) в колонне в процессе испытания (эксплуатации), г/см³ (для газовых скважин $\rho_{\rm B} \approx 0,00084$ г/см³; $d^2\rho_{\rm B} = 0$)

$$\Delta t = 0.5 (t_3 - t_1 + t_4 - t_2);$$

 t_1 , t_3 — температуры на устье скважины до эксплуатации (испытания) и в процессе эксплуатации, °C; t_2 , t_4 — температуры колонны на глубине h до испытания (эксплуатации) и во время эксплуатации, °C.

Если промывочную жидкость заменяют водой перед испытанием (эксплуатацией) через затрубное пространство, колонна должна удовлетворять условию

$$\frac{P_{\text{CTp}}}{h_{\text{CTp}}} \gg Q_{\text{H}} + 240F_{\text{cp}} \, \Delta t_{\text{OXJ}} - 47p_{\text{y. SAM}} d^2 + 0.235h \, (D^2 \rho_{\text{p}} - d^2),$$

где $\Delta t_{
m oxn}$ — абсолютная величина средней температуры охлаждения колонны при замене промывочной жидкости водой (опре-

деляется по методике ГрозНИ, формула Г. Г. Полякова); $p_{y. \, \text{зам}}$ — давление на устье скважины при замене промывочной жидкости водой, МПа.

В процессе испытания (эксплуатации) колонна в любом сечении должна удовлетворять условию

$$\begin{split} \frac{(P_{\text{ctp}})_z}{n_{\text{ctp}}} \geqslant Q_{\text{H}} - Q_z; \\ \frac{(P_{\text{ctp}})_z}{n_{\text{ctp}}} \geqslant Q_{\text{H}} - Q_z - 240F_{\text{cp}} \Delta t + 47\rho_{\text{y}} d^2 - 0.235h (D^2 \rho_p - d^2 \rho_{\text{B}}); \\ \frac{[\sigma_{\text{t}}]_z}{n} \geqslant 2 \left[p_{\text{y}} - 10^{-2} z \left(\rho_{\text{p}} - \rho_{\text{B}} \right) \right] \frac{D_z^2}{D_z^2 - d_z^2}, \end{split}$$

где $(P_{\text{стр}})_z$ — допустимая нагрузка на страгивание резьб, находящихся на глубине z, H; $n_{\text{сгр}}$ — коэффициент запаса прочности на растяжение (приведен в п. V разд. 7.2); Q_z — вес колонны труб от устья до глубины z, H; $[\sigma_T]_z$ — предел текучести материала труб, находящихся на глубине z, МПа; D_z , d_z — наружный и внутренний диаметры труб, находящихся на глубине z, см; n — коэффициент запаса прочности на внутреннее давление (для труб диаметром до 219 мм n = 1,15, для зарубежных труб n = = 1,1).

7.5. РАСЧЕТ РАССТОЯНИЙ МЕЖДУ ЦЕНТРАТОРАМИ

В случае свободной подвески обсадной колонны (колонна не разгружена на забой) необходимо определить расстояние (м) от башмака до нейтрального сечения

$$H = 0.128 \; \frac{D^2 \left[(z-h) \, \rho_{\pi} + \rho_{p} h \right] - d^2 \rho_{p} z}{D^2 - d^2}.$$

Безразмерные коэффициенты, характеризующие прогиб труб под собственным весом в наклонной скважине, определяют по формулам

$$A = 125 \frac{H^2 q_1 (D_c - D) \cos^2 \alpha_{cp}}{EJ \sin \alpha_{cp}},$$

$$C = 0.1 \sqrt{\frac{10EJ}{Hq_1 \cos \alpha_{cp}}},$$

где $D_{\rm c}$ — диаметр скважины по кавернометрии, мм; $q_{\rm 1}$ — масса 1 см обсадных труб с учетом потери массы в промывочной жидкости, кг/см; $\alpha_{\rm cp}$ — средний угол наклона ствола скважины в зенитной плоскости, градус.

Обозначения и размерности величин, входящих в формулы, указаны ранее в различных методиках. Задаваясь различными интервалами с шагом 0.25H, рассчитывают коэффициенты A и C и по номограмме (рис. 7.4) определяют расстояние между центраторами в выбранном интервале. Так, задаваясь интервалами

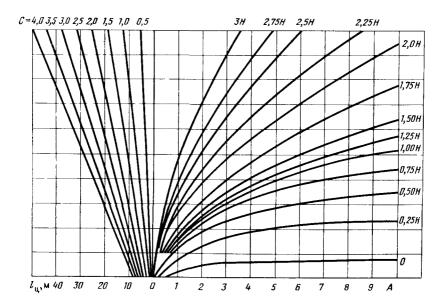


Рис. 7.4. Номограмма определения расстояния между центраторами

0,25H, 0,5H, 0,75H и H, расстояния между центраторами определяют в интервалах их расстановки: (башмак колонны — 0,25H), (0,25H-0,5H), (0,5H-0,75H), (0,75H-H) и т. д. Расстояние между центраторами может быть взято также по табл. 7.9.

Расстояние (м) между центраторами в пределах сжатого участка обсадной колонны приведены в табл. 7.9.

Таблица 7.9

скважины, труб	Диаметр			y 1	гол н	аклог	на скв	ажины	, град	yc	
	труоы, мм	5	10	15	20	25	30	35	40	45	50
320 295 269 216 216 216 190 190	245 219 219 168 146 140 146 140	23 22 19 18 17 17 15 15	19 18 16 15 15 14 13 13	17 16 15 14 13 13 12 11	16 15 14 13 12 12 11 11	15 14 13 12 12 11 10 10	15 14 12 12 11 11 10 10	14 13 12 11 11 11 10 9	14 13 12 11 10 10 9 9	13 13 11 11 10 10 9 9	13 12 11 10 10 10 9

Примечание. В пределах растянутого участка обсадной колонны расстояние между центраторами необходимо увеличить на 10-15~%.

7.6. ОПРЕДЕЛЕНИЕ ПРОХОДИМОСТИ ОБСАДНЫХ КОЛОНН ПРИ СПУСКЕ

Проходимость обсадных колонн при спуске в искривленном участке ствола скважины возможна при условии

$$B+G_{\text{\tiny Kp}}-T_{\text{\tiny H}}-T_{\text{\tiny y}}-T_{\text{\tiny R}}\geqslant 0,$$

где B — составляющая веса колонны длиной L, направленная вдоль ее оси, H; $G_{\rm kp}$ — допустимая нагрузка на колонну весом труб, расположенных выше определяемого участка, при которой начинается продольный изгиб труб, H ($G_{\rm kp}$ не должна превышать допустимой технологической разгрузки колонны при спуске); $T_{\rm H}$, $T_{\rm y}$ — силы сопротивления, вызванные соответственно трением колонны по стенке скважины и контактным давлением под действием упругости колонны при прохождении искривленного участка, H; $T_{\rm k}$ — сила сопротивления движению башмака колонны в искривленном участке ствола, H.

$$B = 10q_1L \cos \alpha_{cp}$$

где q_1 — масса 1 см обсадных труб с учетом потери массы в промывочной жидкости; L — длина участка ствола, в пределах которого определяется проходимость колонны, см, принимают $L\gg 2000$ см; $\alpha_{\rm cp}$ — средний угол наклона ствола скважины в зенитной плоскости на определяемом участке L, градус.

$$G_{\rm kp} = 19,4 \sqrt[3]{10EJq_1^2},$$

где E — модуль Юнга, для стали $E=2,1\cdot 10^5$ МПа; I — осевой момент инерции труб, см⁴,

$$I = 0.049 (D^4 - d^4),$$

D, d — наружный и минимальный внутренний диаметры труб, проходящих при спуске через участок L, см.

$$T_{\rm H} = 10 \mu q_1 L \sin \alpha_{\rm cp}$$

где μ — коэффициент трения стали о породу ($\mu=0.05-0.6$), при наличии смазывающих добавок в буровом растворе $\mu\leqslant0.2$, при сухом трении — (в воздухе) $\mu\approx0.6$:

$$T_{y} = \mu t L,$$

$$t = 768 \frac{Elf_{\text{max}}}{t^{4}};$$

$$t = 2\sqrt{(R + 0.5D_{c})^{2} - (R + 0.5D_{c} - f_{\text{max}})^{2}},$$

где t — равномерно распределенная по длине участка колонны удельная сила контактного давления, H/cm; t — длина прямоли-

нейного участка колонны труб, вписывающегося в искривленную часть ствола скважины, в пределах которой проверяется проходимость, см; $f_{\rm max}$ — зазор между стенкой скважины и муфтой, см, $f_{\rm max} = D_{\rm c} - D_{\rm m}$; $D_{\rm c}$ — диаметр скважины по кавернометрии на участке L; $D_{\rm m}$ — диаметр муфты трубы; R — пространственный радиус кривизны ствола скважины на участке L, см,

$$R = 57,325L/\Delta\psi$$
;

 $\Delta \psi$ — изменение пространственного угла наклона ствола скважины на участке L, градус,

$$\Delta \psi = 2 arcsin \sqrt{ \frac{\Delta \alpha}{2} \cos^2 \frac{\Delta \theta}{2} + \sin^2 \frac{\Delta \theta}{2} \sin^2 \alpha_{cp}};$$

 $\Delta \alpha$, $\Delta \theta$ — изменение угла наклона ствола скважины в зенитной и азимутальной плоскостях на участке L, градус.

$$T_{R} = \mu N + F$$
,

где N — сила нормального давления башмака колонны на стенку скважины, H,

$$N = \frac{200EI(2R + D_c)}{RI(2R - D_c + 2D_M)};$$

F — сила, направленная вдоль оси колонны от воздействия башмака колонны на стенку искривленного ствола скважины, H,

$$F = \frac{200EI}{R(2R - D_{c} + 2D_{m})}.$$

При наличии нескольких интервалов с резкими изменениями пространственного угла условие проходимости проверяют на участке с меньшим значением R.

7.7. ОСНАСТКА ОБСАДНЫХ КОЛОНН

переводники для обсадных труб

ОСТ 39-137—81, ТУ 36-2328—80

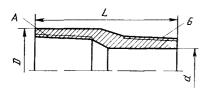


Рис. 7.5. Переводник для обсадных труб

Таблица 7.10

W	Pes	ьба	n			Macca,
Шифр	A	Б	<i>D</i> , мм	d, MM	L, mm	кг
ПО-426 К × 377 К ПО-426 К × 324 К ПО-377 К × 324 К ПО-377 К × 324 К ПО-324 К × 219 К ПО-273 К × 219 К ПО-273 К × 168 К ПО-219 К × 168 К ПО-219 К × 146 К ПО-168 К × 146 К ПО-168 К × 140 К ПО-146 К × 127 К ПО-146 К × 127 К ПО-140 К × 127 К ПО-140 К × 114 К ПО-140 К × 114 К ПО-127 К × 114 К	426K 426K 377K 324K 273K 273K 219K 219K 168K 146K 146K 140K 140K	377K 324K 324K 273K 219K 219K 168K 146K 146K 140K 127K 114K 114K	451 451 402 351 351 298 298 243 243 188,7 166,0 166,0 153,7 153,7	402 351 351 298 243 243 188 186 124,7 118,7 108,6 97,1 108,6 97,1 97,1	460 460 460 460 460 460 430 430 275 283 254 272 240 258 232	78 72 65 54 50 42 38 32 28 13 14 10 11 8
ΠΟ-168Κ×146У ΠΟ-168У×140У ΠΟ-146У×127У ΠΟ-146У×127У ΠΟ-140У×114У ΠΟ-140У×114У ΠΟ-127У×114У ΠΟ-168Т×146Т ΠΟ-168T×140T ΠΟ-146T×114T ΠΟ-146T×114T ΠΟ-140T×127T ΠΟ-140T×114T ΠΟ-140T×114T ΠΟ-127T×114T	168Y 168Y 146Y 146Y 140Y 127Y 168T 168T 146T 146T 140T 140T 127T	146V 140V 127V 114V 127V 114V 114V 146T 140T 127T 114T 127T 114T	187,7 187,7 166,0 166,0 153,7 153,7 141,3 187,7 166,0 166,0 153,7 141,3	124,7 118,7 105,6 93,9 105,6 93,9 93,9 124,7 118,7 105,6 93,9 105,6 93,9	310 315 292 304 274 287 260 282 293 269 288 257 277 250	15 12 11 9 10 8 13 14 11 12 11 9
ПО-245У×245К ПО-219У×219К ПО-194У×194К ПО-178У×178К ПО-168У×168К ПО-146У×146К ПО-140У×140К ПО-127У×127К ПО-114У×114К	245Y 219Y 194Y 178Y 168Y 146Y 140Y 127Y 114Y	245K 219K 194K 178K 168K 146K 140K 127K 114K	269,9 244,5 215,9 194,5 187,7 166,0 153,7 141,3 127,0	216,9 190,7 168,3 152,4 144,1 124,7 118,7 108,6 97,1	291 287 270 264 258 246 238 227 213	26 24 17 14 13 11 8 7
ПО-245Т × 245К ПО-219Т × 219К ПО-194Т × 194К ПО-178Т × 178К ПО-168Т × 168К ПО-146Т × 146К ПО-140Т × 140К ПО-127Т × 127К ПО-114Т × 114К ПО-245Т × 245У	245T 219T 194T 178T 168T 146T 140T 127T 114T 245T	245K 219K 194K 178K 168K 146K 140K 127K 114K	269,9 244,5 215,9 194,5 187,7 166,0 153,7 141,3 127,0 269,9	216,9 190,7 168,3 152,4 144,1 124,7 118,7 108,6 97,1 212,7	272 273 259 258 246 233 230 218 212	24 22 16 13 12 10 8 6 5
ПО-219Т×219У	219T	219 y	244,5	190,7	302	24

Шифр	Pes	зьба	<i>D</i> , мм	d, мм	L, MM	Macca,	
шифр	A	Б	D, MM	u, mm	L; MM.	Kr	
TIO-194T×194Y TIO-178T×178Y TIO-168T×168Y TIO-146T×146Y TIO-140T×140Y TIO-127T×127Y TIO-114T×114Y	194T 178T 168T 146T 140T 127T 114T	194У 178У 168У 146У 140У 127У 114У	215,9 194,5 187,7 166,0 153,7 141,3 127,0	163,5 148,0 144,1 124,7 118,7 105,6 93,9	291 283 265 252 246 239 227	20 16 13 11 8 7 6	
ΠΟ 168Γ×146Γ ΠΟ 168Γ×140Γ ΠΟ 146Γ×127Γ ΠΟ-146Γ×114Γ ΠΟ-140Γ×127Γ ΠΟ-140Γ×114Γ ΠΟ 127Γ×114Γ	168Г 168Г 146Г 146Г 140Г 140Г 127Г	146Г 140Г 127Г 114Г 127Г 114Г 114Г	187,7 187,7 166,0 166,0 153,7 153,7 141,3	124,7 118,7 105,6 93,9 105,6 93,9 93,9	288 299 274 292 261 281 250	13 14 11 12 9 9	

Примечания. 1. Обозначение резьбы: K — короткая, треугольный профиль; $V \hookrightarrow удлиненная$, треугольный профиль; $T \longrightarrow$ обсадных труб типа OTIM, $\Gamma \longrightarrow$ обсадных труб типа OTII. 2. Переводники изготовляют из стали группы прочности Д, Е, Л.

переводники с замковой резьбы на резьбу обсадных труб ост 39-049—77

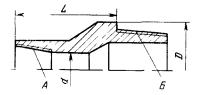


Рис. 7.6. Переводник с бурильных труб на обсадные

Таблица 7.11

	Pes	вьба	_	_		Macca,	
Шифр	A	Б	<i>D</i> , мм	d, mm	L, mm	КГ	
П-3-62/114 П-3-76/114 П-3-88/114 П-3-88/127 П-3-88/140 П-3-88/146 П 3-88/168 П-3-147/168 П-3-88/178 П-3-88/178	3-62 3-76 3-88 3-88 3-88 3-88 3-147 3-88 3-88	114K 114K 114K 127K 140K 146K 168K 168K 178K 194K	133 133 133 146 159 166 188 188 198 216	36 45 58 58 58 58 58 101 58	366 366 366 380 390 390 406 406 413	17 19 18 23 26 25 31 47 35 43	
П 3-147/178 П 3-147/194	3-147 3-147	178K 194K	198 216	101 101	415 432	50 55	

Продолжение табл. 7.11

	Pes	вьба				Macca
Шифр	A	Б	<i>D</i> , мм	d, мм	<i>L</i> , мм	кг
П-3-147/219	3-147	219K	245	101	452	63
П-3-147/245	3-147	245K	270	101	458	74
Π -3-147/273	3-147	273K	299	101	471	79
П-3-147/299	3-147	299K	324	101	490	86
П-3-147/324	3-147	324K	351	101	520	91
Π-3-147/340	3-147	340K	365	101	530	95
П-3-147/351	3-147	351 K	376	101	540	95
П-3-147/377	3-147	377K	402	101	560	96
П-3-147/407	3-147	407K	432	101	580	105
П-3-147/426	3-147	426K	451	101	600	109
Π-3-147/508	3-147	508K	533	101	660	135
	ŀ					

БАШМАКИ КОЛОННЫЕ

OCT 39-011-74

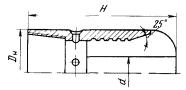


Рис. 7,7. Башман колонный

Таблица 7.12

Тип	D _H	H	d	Масса, кг
БК-114	133	300	50	15
БK-127	146	310	60	18
БК-140	159	330	70	21
БК-146	166	340	70	24
БК-168	188	350	80	28
БК-178	198	380	90	32
БК-194	216	390	100	42
БК-219	245	410	110	50
БК-245	270	420	120	60
БК-273	299	430	130	65
БК-299	324	430	150	73
БК-324	351	440	· 160	85
БК-340	365	440	170	90
БK-351	376	450	180	98
БК-37 7	402	460	[190	112
БК-407	432	460	200	120
БК-426	451	500	220	145
БК-508	533	500	280	180

БАШМАКИ ДЛЯ ОБСАДНЫХ ТРУБ

OCT 26-02-227---71

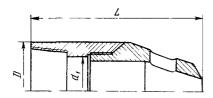


Рис. 7.8. Башмак для обсадных труб

Таблица 7.13

Тип	D, MM	L, mm	<i>d</i> ₁ , mm	Масса, к
БП-114	133	500	103	22
БП-127	146	530	115	26
БП-140	159	560	128	31
БП-146	166	560	133	35
БП-168	188	625	156	42
БП-178	198	645	164	55
5Π-194	216	655	180	69
5П-219	245	715	206	79
5Π -245	270	785	231	90
5П-273	299	800	260	113
5П-299	324	805	285	143
5П-324	351	865	308	154
5П-340	365	880	326	156
5П-351	376	880	333	173
5Π-377	402	960	359	196
5Π-407	432	1050	390	220
5П-426	451	1085	407	259
БП-508	533	1085	494	278

КЛАПАНЫ ОБРАТНЫЕ ДРОССЕЛЬНЫЕ

ТУ 39-01-08-281-77, ТУ 39-01-08-282-77

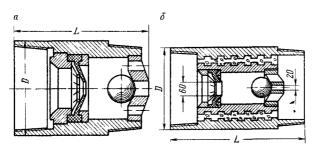


Рис. 7.9. Клапаны дроссельные

160

Таблица 7.14

Шнфр	Диаметр колонны, мм	D, мм	L, mm	Рабочее давление, МПа	Темпера- тура, °С	Масса, кр		
ЦКОД-1 (рис. 7.9, а)								
ЦКОД-114-1 ЦКОД-127-1 ЦКОД-140-1 ЦКОД-146-1 ЦКОД-168-1 ЦКОД-178-1 ЦКОД-194-1	114 127 140 146 168 178 194	133 146 159 166 188 198 216	290 330 350 350 370 325 325	15 15 15 15 15 15	200 200 200 200 200 200 200	11 14 17 20 25 30 32		
		ЦКОД-2	(рис. 7.9	, б)				
ЦКОД-219-2 ЦКОД-245-2 ЦКОД-273-2 ЦКОД-299-2 ЦКОД-324-2 ЦКОД-340-2 ЦКОД-351-2 ЦКОД-377-2 ЦКОД-407-2 ЦКОД-426-2	219 245 273 299 324 340 351 377 407 426	245 270 299 324 351 365 376 402 432 451	318 265 340 345 350 350 365 370 374 380	10 10 7 7 7 7 5 5 5	150 150 150 150 150 150 100 100 100	39 57 59 66 77 82 86 96 105 115		

Примечания 1. Диаметр шара 76 мм. 2. Режим промывки: $Q \leqslant 60$ л/с, $t \leqslant 30$ ч

СКРЕБКИ КОРОНЧАТЫЕ

ТУ 39/5-329-74

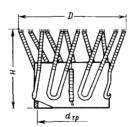


Рис. 7.10. Скребок корончатый

Таблица 7.15

Тип	Диаметр скважины	$d_{ extsf{Tp}}$, мм	<i>D</i> , мм	Н, мм
CK 127/161	161—190	127	230	190
CK 140/190	190—214	140	250	190
CK 146/190	190—214	146	250	190
CK 168/214	214—245	168	300	190
CK 108/214 CK 219/269 CK 245/295	269—295 295—324	219 245	350 400	230 230

6 3akas 862 161

ТУРБУЛИЗАТОРЫ

ТУ 39-01-08-284--77

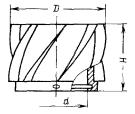


Рис. 7.11. Турбуливатор

Таблица 7.16

	· · · · · · · · · · · · · · · · · · ·				
Шифр	Днаметр скважины	<i>D</i> , мм	d, mm	<i>Н</i> , мм	Масса, кг
,					
LIT 114/143-146	140 146	1 ,,,	110	95	
HT 114/149-151	143146	141	116	95 95	2 2
ЦТ 114/149-151 ЦТ 127/158-165	149151	147	116	1	3
	158165	156	129	105	3
ЦТ 127/165-171	165—171	163	129	105	
ЦТ 140/187-191	187—191	185	142	115	3
LIT 140/196-200	196—200	194	142	115	3
ЦТ 140/212-216	212-216	210	142	115	3
ЦТ 146/187-191	187—191	185	148	120	4
ЦТ 146/196-200	196200	194	148	120	4
ЦТ 146/212-216	212-216	210	148	120	4
ЦТ 168/212-216	212—216	210	171	135	5
ЦТ 168/222-228	222228	220	171	135	5
ЦТ 168/245-251	245251	242	171	135	5
ЦТ 168/269	269	267	171	135	5
ЦТ 178/245-251	245—251	242	181	145	5
ЦТ 178/269	269	267	181	145	5
ЦТ 194/245-251	245—251	242	197	160	6
ЦТ 194/269	269	267	197	160	6
ЦТ 219/269	269	267	222	180	9
ЦТ 219/295	295	293	222	180	9
ЦТ 219/311-320	311-320	309	222	180	9
ЦТ 245/295	295	293	248	200	11
ЦТ 245/311-320	311320	309	248	200	11
ЦТ 245/349	349	347	248	200	11
ЦТ 273/349	349	347	276	220	14
ЦТ 273/374-381	374381	371	276	220	14

центраторы пружинные

ТУ 39-01-08-283--77

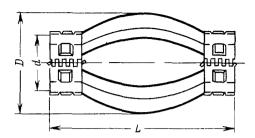


Рис. 7.12. Центратор пружин-

Таблица 7.17

Шифр	Диаметр вкважины, мм	d, mm	D, мм	<i>G</i> , кН	Число пружив	Macca, Kr
ЦЦ-114/146-165-1 ЦЦ-127/165-191-1 ЦЦ-140/191-216-1 ЦЦ-146/191-216-1 ЦЦ-146/222-251-1 ЦЦ-168/216-245-1 ЦЦ-168/251-270-1 ЦЦ-178/245-270-1 ЦЦ-194/245-270-1 ЦЦ-219/269-295-1 ЦЦ-245/295-320-1 ЦЦ-273/349-1	146—165 165—191 191—216 191—216 222—251 216—245 251—270 245—270 245—270 269—295 295—320 349	116 129 142 148 148 170 170 180 196 221 247	210 240 264 270 300 292 320 330 320 345 370 400	5 5 8 8 8 8 8 8 8	4466666668888	9 9 10 10 11 11 12 13 15 16 17 20
ПП-299/349-381-1 ЦП-324/394-1 ЦП-340/394-445-1 ЦП-351/445-490-1 ЦП-377/490-1 ЦП-407/508-1 ЦП-426/508-1	349—381 394 394—445 445—490 490 508 508	301 326 342 353 379 409 428	430 445 510 540 566 558 580	10 13 13 13 16 16 16	8 10 10 10 12 12 12	25 28 30 33 35 40 42

Примечания. 1. G — максимальная радиальная нагрузка; допустимая осевая нагрузка 12 кH. 2. Скорость спуска колонны до 1,2 м/с. 3. Длина центратора L не обусловлена.

МУФТЫ ДЛЯ СТУПЕНЧАТОГО ЦЕМЕНТИРОВАНИЯ

ТУ 39-860-83, ТУ 39-961-83

Рис. 7.13. Муфта для ступенчатого цементирования:

1, 3 — стопорные и срезные штифты соответственно; 2 — вапорный ста-

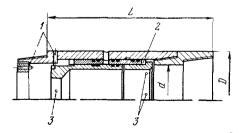


Таблица 7.18

Шифр	Днаметр обсадны х труб	D, MM	d, мм	L, mm	G, RH	Δρ, Μ.Πα	Maeca, кг
MCII1-140 MCII1-146 MCII1-168 MCII1-178 MCII1-194 MCII1-219 MCII1-245 MCII2-273 MCII2-279 MCII2-324 MCII2-340	140 146 168 178 194 219 245 273 299 324 340	168 176 196 210 226 257 283 312 338 362 383	120 125 146 156 172 195 224 250 275 303 315	665 665 665 665 665 665 680	750 900 1200 1500 2000 2000 2000 2100 2250 2400 2500	60 58 50 48 46 43 40 36 32 30 30	60/15 62/15 75/25 80/25 96/35 104/43 125/48 185/70 215/80 250/90 275/100

Примечания. 1. В комплект входят пробкиз продавочная, падающая и запорная. 2. В знаменателе указана масса разбуреваемых деталей. 3. G — грузоподъемность муфты; Δp — допустимый перепад наружного и внутреннего давлений.

пробки продавочные

ТУ 39-208-76, ТУ 39-1086-85

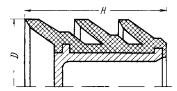


Рис. 7.14. Пробиа продавочная

Таблица 7.19

		Диаметр, м	м			
Шифр	обсадной колонны	пробки <i>D</i>	уплотняемый	Высота <i>Е</i> , мм		
ПП-114×146	114—146	136	96—127	227	4	
$\Pi\Pi$ -178×194	178194	185	154—180	225	4	
$\Pi\Pi$ -219×245	219245	236	195—230	320	13	
$\Pi\Pi$ -273×299	273—299	285	249—282	380	13	
$\Pi\Pi$ -324×351	324351	335	301—331	510	25	
$\Pi\Pi$ -407 \times 426	407-426	410	382—406	620	74	
ПП-146	146	138	124—133	227	3	
ПП-168	168	158	140—154	205	4	
ПП-219	219	212	191206	320	6	
ПП-245	245	236	217—229	320	8	
ПП-377	377	364	353—359	560	59	
КРП 140-146	140—146	143		330 *	6	
KPΠ 168	168	164	_	360 *	9	
KPII 178	178	174	l —	360 *	11	

Примечания. 1. КРП состоит из нижней (с диафрагмой) и верхней глухой пробок. Разрыв диафрагмы при давлении 1—1,5 МПа. 2. Звездочкой обозначена высота одной пробки.

пробки продавочные двухсекционные

ТУ 39-207-76

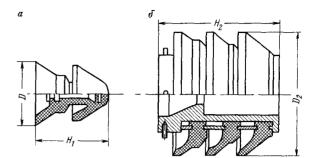


Рис. 7.15. Пробка продавочная двухсекционная: a, 6 — вермняя и ниж-няя части

	Ве	рхня	я част	гь	Нижня	я часть			
Швфр	Диаметр буриль- ной трубы	D	EI 1	Macca,	Днаметр обсадной трубы	Уплот- няемый днаметр	D,	H₃	Macca, kr
СП 114×146 СП 146×168 СП 178×194	114—140	134	230	2	114—146 146—168 178—194	96—128 124—150 154—180	136 158 185	284 245 260	4 9 10
СП 219×245 СП 273×299 СП 324×351 СП 377 СП 407×426	140—147	131	236	2	219—245 273—299 324—351 377 407—426	195—230 249—282 300—333 354—359 382—406	236 285 335 364 410	367 400 500 634 700	15 23 31 73 104

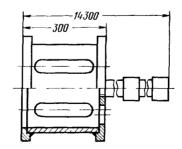


Рис. 7.16. Шаблоны для обсадных труб

Шаблоны для отечественных и импортных обсадных труб

5 3 внутренним диаметром обсадной трубы, мм

7.8. ПАКЕРЫ ДЛЯ ПРЕДОТВРАЩЕНИЯ ЗАТРУБНЫХ ПРОЯВЛЕНИЙ

ПАКЕРЫ ЗАКОЛОННЫЕ

OCT 39-149-82

ППГ — пакеры для предотвращения затрубных газонефтеводопроявлений (для распакеровки необходимо внутри обсадной колонны создать избыточное давление после получения сигнала «стоп»);

 $\Pi\Gamma\Pi$ — пакер гидравлический проходной для предотвращения затрубных газонефтеводопроявлений (не требует создания избыточного давления);

ПДМ — пакер для двухступенчатого и манжетного цементирования;

ПГБ — пакер для герметизации башмака обсадной колонны. Пакеры заколонные для предотвращения затрубных проявлений (рис. 7.17) по ТУ 39-01-682—81, ТУ 39-928—84 приведены в табл. 7.21.

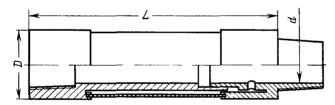


Рис. 7.17. Пакер ваколонный для предотвращения затрубных проявлений

Таблипа 7.21

	Диаметр, мм		Диаметр, мм Длина		Macca,	Допустимые давления, МПа		
Шифр	обсадной колонны	наруж- ный <i>D</i>	внутрен- ний d	Z, mm	KĽ	внутрен- нее	смятня	
ПГП-146 ПГП-168 ПДМ-146	146 168 146	172 195 176	124 144 130	5035 5035 3700	290 340 250	20 20 45	30 25 35	

Примечание. Допустимая температура 100°C, допустимая нагрузка растяжения 1000 кН.

УСТРОЙСТВО ДЛЯ РАЗОБЩЕНИЯ ПЛАСТОВ

TY 39-01-08-669--81

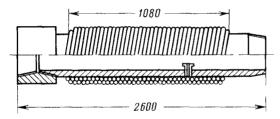


Рис. 7.18. Устройство для разобщения пластов

Таблина 7.22

*** 1	Диам	•	
Шифр	колонны	устройства	Масса, кг
УРП-127 Д-4 (T)	127	151	146
УРП-140 Д-4 (T)	140	164	174
УРП-146 Д-4 (Т)	146	170	184
УРП-168 Д-4 (Т)	168	192	216

Примечание Забойная температура не более 100 °C

7.9. ПАКЕРЫ ДЛЯ РАЗОБЩЕНИЯ ИНТЕРВАЛОВ

пакеры для исследования зон поглощений

ТУ 39-1012-86, ТУ 39-1014-85

Рис. 7.19. Пакер разбуриваемый для исследования вон поглощения

Таблица 7.23

		Диаметр, мм					
	наруж- ный <i>D</i>	по плашкам в транс- портном положении ний		Длина L, мм	Масса, кг	Усилие распакеров- ки, кН	
ПРГМ-175 ПГМ-175 ПРГМ-195 ПГМ-195	175 175 195 195	170 170 190 190	70 68 70 68	2230 1900 2230 2000	143 180 150 220	150 85 150 120	

Примечания 1 Перепад давлений не более 15 МПа 2 Гарантированный ресурс работы для ПРГМ — 25 ч, для ПГМ — 350 ч

пакеры взрывные для цементирования под давлением

ТУ 41-12-1364--86

Таблица 7.24

· · · · · · · · · · · · · · · · · · ·	1		Ma	исса, кг	
Шифр	Днаметр, мм	Длина, мм	ком- плекта	остается в скважине	Допустимая разгрузка, кН
ПВЦ 110-150 (200) ПВЦ 118-150 (200) ПВЦ 132-150 (200)	110 118 135	605 605 625	106 115 137	19 22 28	350 (800) 400 (900) 500 (1100)

Примечания 1. Цифры 150 и 200 обозначают температуру применения, °С. 2. В скобках указаны величины, относящиеся к ПВЦ-200. 3. Допустимый перепад давления 29 (68) МПа.

ПАКЕРЫ ВЗРЫВНЫЕ ДЛЯ УСТАНОВКИ РАЗОБЩАЮЩИХ МОСТОВ ПРИ КАПИТАЛЬНОМ РЕМОНТЕ СКВАЖИН

ТУ 41-12-1334—86, ТУ 41-12-1256—85

Таблица 7.25

				Дог	устимые
Шифр	Наружный днаметр, мм	днаметр, мм кг	Macea, ĸr	раэгруэка, кН	перепад давления, МПа
ПВР-48-010 ПВЭ-118	48 118	2850 900	20 34	147 500	34 50
ПВЭ-135 ПВЭ-146	135 146	900 915	48 56	500 750	50 35
ПВЭ-182	185	1000	94	1000	35

7.10. МАТЕРИАЛЫ ДЛЯ ГЕРМЕТИЗАЦИИ РЕЗЬБ

СМАЗКИ ДЛЯ ГЕРМЕТИЗАЦИИ РЕЗЬБ ОБСАДНЫХ ТРУБ

Таблица 7.26

Тип скважины	Темпе- ратура, °С	Давле- ние, МПа	Тип резьбы	Тип смазки
Нефтяная *	100 120 200 200	$ \begin{array}{ c c c } \hline < 12,7 \\ > 12,7 \\ < 12,7 \\ > 12,7 \end{array} $	Треугольная » »	Р-2МВП УС-1 Р-402 Лента ФУМ
Газовая, газоконденсат- ная, нефтегазовая	100 120 200 200	$ \begin{vmatrix} <12,7 \\ >12,7 \\ <12,7 \\ <20,0 \end{vmatrix} $	ОТТГ, ТБО Любой ОТТГ, ТБО Любой	Р-2МВП УС-1 Р-402 Лента ФУМ

^{*} Газовый фактор до 100.

Норма расхода ленты	ФУМ	и смаз	вок (на	одно	соедин	ение)			
Диаметр трубы, мм			146	168	194	219	245	299	324
Расход ФУМ, г	10	11	12	15	16	19	21		
Расход смазки, г			55	70	90	110	150	180	223

8. ЦЕМЕНТИРОВАНИЕ СКВАЖИН

8.1. КЛАССИФИКАЦИЯ ТАМПОНАЖНЫХ ЦЕМЕНТОВ

ГОСТ 1581-85

```
По вещественному составу:
    бездобавочный ДО:
    с минеральными добавками Д (добавка в %).
По плотности:
    легкие (\rho < 1,4 г/см<sup>3</sup>);
    облегченные (\rho = 1,4 \div 1,65 г/см<sup>3</sup>);
    нормальные (\rho = 1,65 \div 1,95 г/см<sup>3</sup>);
    утяжеленные (\rho = 1.95 - 2.3 \text{ г/см}^3);
    тяжелые (\rho > 2,3 г/см<sup>3</sup>).
По температуре применения:
для низких температур ПЦТ-50 (<15°C);
                   » ПЦТ-50 (15—50 °С);

» ПЦТ-100 (50—100 °С);

» ПЦТ-150 (100—150 °С);
    нормальных
 » умеренных
 » повышенных
                               — (150—250 °C);
                         »
    высоки х
                                 - (>250 °C).
    сверхвысоких
По объемным деформациям:
    безусадочные (расширение до 0,1 %);
    расширяющиеся (расширение более 0,1 %);
    цементы, к которым требования не предъявляют.
```

Пример обозначения: тампонажный облегченный цемент с минеральной добавкой 30 % для повышенных температур — ПЦТ-Д30-150 обл.

методы испытаний тампонажных цементов

ГОСТ 26798.0-85

Температура проведения анализа цемента указывается в НТД на каждый его вид. Выход на режим консистометра или автоклава — 2° /мин, при температуре проведения анализа свыше 100° С — предварительный прогрев до 75° С. Растекаемость цементного теста должна быть 180-220 мм при водоцементном факторе для легких цементов — 1,3-1,5; облегченных — 0,6-1,3; нормальных — 0,4-0,6; утяжеленных — 0,3-0,4.

Допустимое напряжение на сжатие (МПа) определяется приложением нагрузки на балочку размерами $20 \times 20 \times 50$ мм между металлическими пластинами размерами $20 \times 25 \times 5$ мм:

$$\sigma_{\rm ex} = 0.002P$$

где Р — нагрузка, приложенная к пластине, Н.

СВОЙСТВА ЦЕМЕНТНЫХ РАСТВОРОВ

OCT 39-014—80, OCT 39-017—80, TY 113-08-565—85, TY 39-995—86, TY 39-01-08-469—79, TY 39-01-08-296—77, TY 39-01-08-535—80

Таблица 8.1

		Температ	vpa, °C	Схватыв	ание, ч	-
Тип цемента	Плотность, г/см ⁸	примене- ния	анадиза	окврвн	конец	Прочнос ть на изги б, МПа
ОЦГ ОШЦ ЦТН ПЦТ-50 ПЦТ-100 ШПЦС-120 ШПЦС-200 ШПЦА-200 ЦТПН УЦГ-1 УШЦ-1-120 ЦТУК-120-1 УЩЦ-200 УЦГ-2 УЩГ-2	1,40—1,50 1,45—1,55 1,70—1,80 1,70—1,80 1,70—1,80 1,70—1,80 1,70—1,80 1,70—1,80 1,84 2,06—2,15 2,06—2,15 2,06—2,15 2,16—2,30 2,16—2,30	30—150 120—250 —2—30 20—50 40—100 80—160 120—250 130—250 20—350 20—100 80—160 120—150 20—100 80—160	75 150 20 22 75 90 120 160 222 75 90 120 160 75 90	- 2 1,2 2 1,7 2 2 3 3 2 1,7 2 3,5 3,5	48 8 2,5 10 5 8 7 8 7 8 10 10 5 8	1,1 1,5 1,5 2,7 3,5 2,5 2,5 2,5 4,5 1,5 2,0 2,0 2,0 2,5 2,5
ЦТУК-120-2 УШЦ-2-200	2,16—2,30 2,16—2,30	80—16 0 120—150	120 160	3,5 3	10 10	2,0 2,5

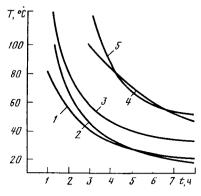


Рис. 8.1. Зависимость времени прокачиваемости цементного раствора от температуры анализа:

— цемент Здолбуновского вавода; 2, 4 — смент ПЦТ-100 с замедлителями; 3 — цемент ШПЦС-120 без добавок; $5 \mapsto$ цемену ЛПЦС-120 с замедлителем

ПАРАМЕТРЫ ЦЕМЕНТНО-ГЛИНИСТЫХ СМЕСЕЙ

Таблица 8.2

Глина	Соотношение	Водосмесевое	Плотность,	Растекаемость
ме сторождения	цемент : глина	отношение	г/см ⁸	смесн, см
Махарадзе	4:1	0,73	1,62	23
	3,5:1	0,75	1,58	23
	3:1	0,80	1,57	23

Глина	Соотношение	Водосмесевое	Плотность, г/см ⁸	Растекаемость
месторождения	цемент # глина	отношение		смеси, см
Махарадзе	2,5 : 1	0,90	1,52	23
	2 : 1	0,95	1,50	22
Иджеван	4:1 3,5:1 3:1 2,5:1 2:1	0,70 0,75 0,80 0,85 0,90	1,58 1,55 1,54 1,53 1,52	22 23,5 23,5 23,5 23 23,5
Асканская	4:1	0,80	1,56	22
	3,5:1	0,85	1,52	22,5
	3:1	0,90	1,49	22
	2,5:1	1,00	1,45	23
	2:1	1,00	1,44	22

Примечания 1. Цемент ПЦТ-100 Новороссийского завода; вода питьевая, г. Симферополь. 2. Растекаемость может изменяться в вависимости от жесткости воды ватворения

8.2. МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ ДЛЯ КРЕПЛЕНИЯ СКВАЖИНЫ

Таблица 8.3

Кальций хлористый Натрий хлористый

Наименование	гост, ост, ту
Цементы	
Портландцемент тампонажный Цемент глиноземистый Цемент гипсоглиноземистый Цемент облегченный (ОЦГ) Облегченный шлаковый цемент (ОШЦ) Утяжеленный цемент (УЦГ) Цемент утяжеленный шлаковый (УШЦ) Цемент шлаковый (ШПЦС) Цемент шлаковый армированный (ШПЦА) Цемент утяжеленный коррозионностойкий (ЦТУК) Цемент для циклическим температур (ЦТПН)	FOCT 1581—85 FOCT 969—77 FOCT 11052—74 TY 39-01-08-469—79 TY 39-01-08-535—80 OCT 39-01-08-535—80 OCT 39-017—80 TY 39-909—83 TY 39-995—85 TY 39-1057—85
Наполнители	
Глинопорошки Зола-унос ТЭС Песок кварцевый Мел природный обогащенный	TY 39-01-08-658—81 FOCT 25818—83 FOCT 22551—77 FOCT 12085—88
Ускорители сронов сиватыва	ния

ГОСТ 450—77 ТУ 113-13-5—83

Нанменование	гост, ост, ту
Замедлители сроков саватыв	ания
Виноградная кислота синтетическая одноводная Технический фурфурол Конденсированная ССБ » Феррохромлигносульфонат (ФХЛС) Гипан Декстрин Натрия бихромат технический Калия бихромат технический	TY 6-09-3939—84 FOCT 10437—80 TY 39-9-22—74 TY 39-094—75 TY 39-095—75 TY 39-01-08-348—78 TY 6-01-166—74 FOCT 6034—74 FOCT 2651—78 E FOCT 2652—78 E
Пеногасители	
Аэросил МАС-200 Спирты синтетические жирные фракции C_7 — C_8 Уплотнительные материал	TY 39-888—83 FOCT 19652—74
Лента ФУМ Состав уплотнительный УС-1 Смазки резьбовые Р-113, Р-402, Р-416 Смазка резьбовая Р-2МВП	TY 6-05-1388-86 TY 38-101440-82 TY 38-101708-78 E TY 38-101332-76

8.3. ОПРЕДЕЛЕНИЕ ЗАБОЙНОЙ ТЕМПЕРАТУРЫ ПЕРЕД ЦЕМЕНТИРОВАНИЕМ

Во время промывки перед цементированием температура на забое понижается, а после прекращения промывки восстанавливается.

Температура понижения на забое скважины во время промывки определяется по формуле Г. Г. Полякова:

$$t_{\text{non}} = t_{\text{aa}6}BA$$
,

температура восстановления после прекращения циркуляции:

$$t_{\text{BOO}} = t_{\text{Bao}}B (A + C),$$

где $t_{\text{ваб}}$ — температура на забое скважины, определенная термометрией, °C; B — коэффициент повышения температуры, зависящий от геотермического градиента; A — коэффициент понижения температуры при промывке, зависящий от интенсивности и времени промывки; C — коэффициент восстановления температуры после прекращения промывки, зависящий от интенсивности промывки и времени восстановления температуры на забое.

Коэффициенты A, B, C выведены из условий бурения скважин на месторождениях Северного Кавказа, но дают погрешность при расчетах для других районов бурения СССР всего 1—2 °C.

ЗНАЧЕНИЯ КОЭФФИЦИЕНТА А

Таблица 8.4

Интенсивность промывки, л/с		Продо	лжительност	ь промывки	, мин	
	10	20	30	60	90	120
10	0.917	0,872	0,836	0,774	0,741	0,720
15	0,917	0,863	0,826	0,758	0,723	0,701
20	0,913	0,857	0,817	0,745	0,710	0,686
25	0,910	0,852	0,811	0,739	0,700	0,676
30	0,907	0,847	0,804	0,730	0,690	0,664
35	0,905	0,843	0,800	0,723	0,682	0,651
40	0,903	0,840	0,795	0,718	0,676	0,650
50	0,900	0,833	0,786	0,706	0,661	0,644
60	0,896	0,828	0,780	0,695	0,650	0,623

ЗНАЧЕНИЕ КОЭФФИЦИЕНТА В

Таблица 8.5

Глубина экважины, м			Забойная	температ	ypa, °C	_		
	40	60	80	100	120	140	160	180
1000	1,00	1,01	1,01		_		_	_
1500	1,00	1,01	1,01	1,02		l —	<u> </u>	_
2000	1,00	1,01	1,01	1,02	—	_		l —
2500	1,01	1,01	1,02	1,02	1,03		l —	_
3000		1,02	1,02	1,03	1,04	1,05		I —
3500		1,02	1,03	1,03	1.04	1.05	1,06	_
4000		1,03	1,03	1,04	1,05	1,06	1,07	1,0
4500			1,04	1,04	1,05	1,06	1,07	1,0
5000			1,04	1,05	1,06	1,07	1,08	1,0

ЗНАЧЕНИЕ КОЭФФИЦИЕНТА С

Таблица 8.6

Интенсивность промывки, л/с		Время по	еле окончан	ня промыві	ки, мин	
	10	20	30	60	90	120
10 15	0,022 0,024	0,041 0,044	0,059 0,063	0,104 0,111	0,138 0,152	0,166
20	0,025	0,046	0,066	0,117	0,155	0,18
25 30	0,026 0,026	0,048 0,049	0,068	0,121 0,125	0,161 0,166	0,194
35 40	0,027 0,028	0,051 0,052	0,072 0,074	0,128 0,131	0,170 0,175	0,209
50 60	0,029 0,030	0,054 0,055	0,077	0,136	0,181 0,186	0,217

8.4. МЕТОДИКА РАСЧЕТА УСТАНОВКИ ЦЕМЕНТНЫХ МОСТОВ

1. Требуемый объем цементного раствора

$$V_{\text{m}} = HS_{\text{chb}} + V_{\text{mp}} (0.02 + c_1 + c_2 + c_3),$$

где H — проектная высота цементного моста, м; $S_{\text{скв}}$ — площадь поперечного сечения скважины, м²; $V_{\text{тр}}$ — внутренний объем заливочных труб, м³; c_1 — коэффициент потерь раствора на стенках труб; c_2 , c_3 — коэффициенты потерь раствора при его смешении с соседней жидкостью соответственно на нижней и верхней границах (при наличии верхней разделительной пробки c_1 = c_3 = 0).

2. Необходимые объемы буферной жидкости:

на нижней границе

$$V_{\text{буф. H}} = c_4 V_{\text{тр}} + c_5 H S_{\text{скв}},$$

на верхней границе

$$V_{\text{буф. B}} = c_4 (V_{\text{тр}} - hS_{\text{тр}}),$$

где c_4 , c_5 — коэффициенты потерь буферной жидкости при ее движении соответственно по заливочным трубам и кольцевому пространству; $hS_{\rm rp}$ — объем цементного раствора, составляемого в заливочных трубах, м³.

3. Необходимый объем продавочной жидкости

$$V_{\text{прод}} = V_{\text{тр}} - hS_{\text{тр}} - V_{\text{тр}} (c_1 + c_3) - V_{\text{буб. в}}.$$

Высококачественная установка цементных мостов возможна только при скоростях восходящего потока в кольцевом пространстве менее 0,5 м/с или 1 м/с, а также при соответствующей разности СНС тампонажного и бурового растворов (рис. 8.2).

Значения коэффициента потерь для различных труб приведены в табл. 8.7.

Рис. 8.2. Эффективность вамещения променочной жидкости цементным раствором (%) в зависимости от разности их плотностей и СНС

	Бурильн	ные трубы НКТ			Бурильные трубы НҚТ		T
Коэффициент .		Буферная э	кидкость				
	Есть	Нет	Есть	Нет			
c ₁ c ₂ c ₃ c ₄ c ₅	0,01 0,02 0,02 0,02 0,02 0,40	0,03 0,04 0,03 —	0,01 0,01 0,02 0,40	0,01 0,02 0,02 —			

8.5. РАСЧЕТ ОБЪЕМА БУФЕРНОЙ ЖИДКОСТИ

Объем буферной жидкости должен удовлетворять условию

$$V_{\text{буф. min}} \leqslant V_{\text{буф}} \leqslant V_{\text{буф. max}}$$

где $V_{\text{буф. min}}$, $V_{\text{буф. max}}$ — минимально необходимый и максимально допустимый объемы буферной жидкости.

При использовании разделительных пробок на границах промывочная жидкость — буферная жидкость и буферная жидкость — тампонажный раствор

$$V_{\text{6y}\Phi. min} = 1.57 \cdot 10^{-4} h \left[D_a^2 - D_{\pi}^2 + 2\Delta \left(D_{\pi} + D_{\pi p} \right) \right],$$

где h — длина цементируемого интервала, м; $D_{\rm c}$ — средний диаметр скважины по каверномеру в интервале цементирования, см; $D_{\rm m}$ — номинальный диаметр долота, см; $D_{\rm m}$ — наружный диаметр обсадных труб, см; Δ — толщина глинистой корки, см (с достаточной точностью толщину корки можно принять равной 1,3—1,5 от величины, определенной на приборах ВМ-6 или ВГ-1 за 2 ч).

При отсутствии разделительных пробок

$$V_{\rm 5yb, min} = 0.18 (V_{\rm TD} + V_{\rm new}) + V_{\rm cm}$$

где $V_{\rm тp}$ — внутренний объем труб, по которым закачивают буферную жидкость, м³; $V_{\rm цем}$ — объем цементируемого интервала, м³; $V_{\rm сm}$ — объем смешения буферной жидкости в промывочной жидкостью и тампонажным раствором, м³,

$$\begin{split} V_{\text{CM}} &= 0.04 \; (V_{\text{Tp}} + V_{\text{QEM}}); \\ V_{\text{буф. max}} &= \frac{\rho_{\text{p}}L - 100 k \rho_{\text{ПЛ}} \; (\cos \alpha)^{-1}}{\rho_{\text{p}} - \rho_{\text{f}}} \; \mathcal{S}, \end{split}$$

где $\rho_{\rm p}$, $\rho_{\rm 6}$ — плотности соответственно промывочной жидкости и буферной жидкости, г/см³; k — коэффициент безопасности (по ЕТП); $\rho_{\rm пл}$ — пластовое давление на глубине L, МПа; α — средний угол наклона скважины в зенитной плоскости на участке цементирования, градус; S — средняя площадь сечения затрубного пространства в интервале цементирования, м².

8.6. ГИДРОДИНАМИЧЕСКИЙ РАСЧЕТ ЦЕМЕНТИРОВАНИЯ

Исходя из конкретных условий проводки скважины задаются скоростью восходящего потока цементного раствора в затрубном пространстве. Для качественного разобщения пластов необходимо, чтобы $v \le 0.5$ м/с или $v \ge 1$ м/с.

Подача (л/с) при закачке продавочной жидкости

$$Q = 0.0785v (D_{\text{ou}}^2 - D_{\text{tu}}^2),$$

где v — принятая скорость восходящего потока цементного раствора, м/с; $D_{\rm cq}$ — средневзвешенный диаметр скважины в интервале подъема цементного раствора, см; $D_{\rm tq}$ — средневзвешенный наружный диаметр труб в этом же интервале, см.

Ожидаемое давление (МПа) на цементировочной головке

$$p_{\text{цем}} = p_{\text{ст}} + p_{\text{тр}} + p_{\text{зат}} \leqslant 0.667 p_{\text{y}},$$

где $p_{\rm cr}$ — разность гидростатических давлений в трубах и затрубном пространстве в конце процесса цементирования; $p_{\rm rp}$, $p_{\rm sat}$ — гидравлические сопротивления в момент окончания прокачки продавочной жидкости соответственно в трубах и затрубном пространстве; $p_{\rm y}$ — допускаемое давление на устье скважины при цементировании (обусловливается прочностью труб или оснастки цементировочной головки, манифольда и др.).

$$p_{\rm cr} = 10^{-2} (L - b) (\rho_{\rm m} - \rho_{\rm B}) - 10^{-2} h (\rho_{\rm m} - \rho_{\rm p}),$$

где L — глубина нахождения башмака обсадной колонны, м; b — высота цементного стакана в колонне, м; $\rho_{\rm q}$, $\rho_{\rm b}$, $\rho_{\rm p}$ — средняя плотность соответственно цементного раствора, продавочной жидкости и жидкости за колонной выше интервала цементирования, г/см³; h — расстояние от устья скважины до уровня цементного раствора, м.

$$p_{\rm TD} = 0.289 \rho_{\rm B} Q^2 l_i / d_{\rm B} + \Delta p_i$$

где l_i — длина колонны (или секции) обсадных труб, м; $d_{\rm B}$ — средневзвешенный внутренний диаметр труб, см; $\Delta \rho$ — потери давления в бурильных трубах, на которых спускают секции обсадных труб, МПа (величину $\Delta \rho$ определяют по соответствующим таблицам).

$$\begin{split} \rho_{\text{sat}} &= 0.289 \rho_{\text{H}} \, \frac{Q^2 \, (L-h)}{(D_{\text{cH}} - D_{\text{TH}})^3 \, (D_{\text{cH}} + D_{\text{TH}})^2} \, + \\ &+ 0.289 \rho_{\text{P}} \, \frac{Q^2 h}{(D_{\text{c}} - D_{\text{Tp}})^3 \, (D_{\text{c}} + D_{\text{Tp}})^2} \, , \end{split}$$

где $D_{\rm c}$ — средневзвешенный диаметр скважины выше интервала цементирования, см; $D_{\rm rp}$ — средневзвешенный наружный диаметр труб в том же интервале, см.

Ожидаемое давление на забое

$$p_{\mathtt{pas}} = p_{\mathtt{cr}} + p_{\mathtt{sar}} \leqslant 0.95 p_{\mathtt{norm}},$$

где $p_{\text{погл}}$ — давление, при котором начинается поглощение промывочной жидкости в пласт (определяется экспериментально, см. разд. 1).

8.7. ЦЕМЕНТИРОВОЧНЫЕ АГРЕГАТЫ И ОБОРУДОВАНИЕ

ПОДАЧА И ДАВЛЕНИЕ, РАЗВИВАЕМЫЕ ЦЕМЕНТИРОВОЧНЫМИ АГРЕГАТАМИ

Таблица 8.8

					Дна	метр вт	улки,	мм			
Тип агрегата	Скорость	100)	11	a	115 (1	20)	128	5	14	10
		Q	р	Q	р	Q	p	Q	р	Q	р
ЦА-320М	I II III IV	1,4 2,5 4,8 8,6	40 32 16 9			1,7 3,2 6,0 10,7	32 26 14 8	2,3 4,3 8,1 14,5	24 19 10 6		
3ЦА-400А	I II III IV	_ _ _	<u>-</u>	6,6 9,5 14,1 19,5	40 27 18 13		 - -	8,8 12,6 18,6 23,4	30 21 14 10	11,2 16,1 23,8 33,0	23 16 11 8
4AH-700	I II III IV	6,0 8,3 11,6 14,6	70 51 36 29	_ _ _		9,0 12,3 17,3 22,0	47 34 24 19	_ _ _	_		_ _ _

Примечания. Подача Q в л/с, давление р в МПа.

Таблица 8.9

[A	Arperar 4P-700							
Частота вращения вала электро-	Число двойных	100	мм	120	мм	Число двойных	100	мм	120	мм
двигателя, об/мин	ходов поршней в 1 мин	Q	р	Q	р	ходов поршней в 1 мин	P	p	Q	p
100	11,2	1,7	40	2,3	30	16,5	1,2	70	1,7	70
200	22,4	3,4	40	4,5	30	33,1	2,3	70	3,4	70
300	33,6	5,1	40	6,8	30	49,7	3,5	70	5,1	70
400	44,8	6,8	40	9,0	30	66,2	4,7	70	6,8	69
500	56,0	8,5	35	11,3	26	82,7	5,8	70	8,5	55
600	67,2	10,2	29	13,5	22	99,3	7,0	67	10,2	46
700	78,4	11,9	25	15,8	19	115,8	8,2	57	11,9	39
800	89,6	13,6	22	18,1	16	132,4	9,3	50	13,6	35
900	100,8	15,3	19	20,3	14	149,0	10,5	45	15,3	31
1000	112,0	17,0	17	22,6	13	165,5	11,7	40	17.0	28
1100	123,2	18,7	16	24,8	12	182,0	12,8	37	18,7	25
1200	134,4	20,4	15	27,1	11	198,6	14,0	33	20,3	23

Примечание. Подача Q в n/c, давление $p \to \mathbf{B}$ МПа.

ПОДАЧА И РАБОЧЕЕ ДАВЛЕНИЕ ЦЕМЕНТИРОВОЧНОГО АГРЕГАТА «ПЕЙСМЕКЕР»

Таблица 8.10

Частота вращения			Диаметр і	зтулок, мм		
коленчатого вала, об/мин	88,9	101,6	114,3	127,0	139,7	152,4
	п	Іодача агре	егата (в л	[/] c)		
450 400 350 300 250 200 150 100 50	13,5 12,0 10,5 9,0 7,5 6,0 4,5 3,0 1,5 0,7	17,5 15,6 13,6 11,7 9,7 7,8 5,8 3,9 1,9 0,9	22,3 19,8 17,3 14,8 12,4 9,9 7,4 4,9 2,5 1,2	27,5 24,4 21,4 18,3 15,3 12,2 9,1 6,1 3,0 1,5	33,3 29,6 25,9 22,2 18,5 14,8 11,1 7,4 3,7 1,8	39,6 35,2 30,8 26,4 22,0 17,6 13,2 8,8 4,4 2,2
	Pa	бочее давл	ение (в М	Па)		
25—450	105	87	70	65	50	42

головки колонные цементировочные

ТУ 39-1021---85

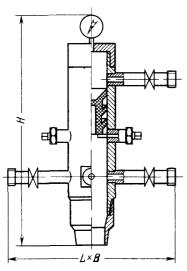
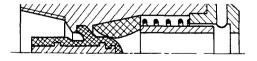


Рис. 8.3. Головка колонная цементировочная

Таблипа 8.11


The state of the s						
Шнфр	Днаметр обсадной колонны, мм	Рабочее давле- ние <i>р</i> , МПа	Длина L, мм	Ширина В, мм	Высота Н, мм	Macca, kr
ГУЦ 140-168×400	140, 146, 168	40	1148	1148	875	225
ГУЦ 178-194×320	178, 194	32	1190	1190	935	290
ГУЦ 219-245×320	219, 245	32	1225	1225	970	333
ГУЦ 273-299×250	273, 299	25	1270	1270	1060	364
ГУЦ 324-340×100	324, 340	10	1320	1320	1100	396
ГУЦ 377×64	377	6,4	528	480	685	145
ГУЦ 426×50	426	5	580	480	685	161

Примечания. 1. Условный диаметр подсоединяемых hиний 50 мм. 2. Запорные устройства — краны пробковые.

УСТРОЙСТВО ДЛЯ КОНТРОЛИРУЕМОЙ УСТАНОВКИ ЦЕМЕНТНЫХ МОСТОВ

ТУ 39-1023---85

Рис. 8.4. Устройство для контролируемой установки цементного моста

Спускается на бурильных трубах диаметром 114—140 мм. Шифр УКЗЦ-155, наружный и внутренний диаметры — 155 и 70 мм, длина — 810 мм, масса — 50 кг, тип резьбы — 3-121, давление выхода первой пробки — 4,5 МПа.

8.8. ОБЪЕМЫ ВНУТРЕННЕГО ПРОСТРАНСТВА И МЕТАЛЛА ТРУБ, МЕЖКОЛОННОГО И ЗАТРУБНОГО ПРОСТРАНСТВ

ОБЪЕМ ЗАТРУБНОГО ПРОСТРАНСТВА СКВАЖИНА — ОБСАДНЫЕ ТРУБЫ

Таблица 8.12

PD KO-	Днаметр скважины, мм																	
Дивметр лони, м	600	575	550	525	500	475	450	425	400	375	350	325	300	275	250	225	200	175
114 127 140 146 168 178 194 219 245 273 299 324 340	28,27 ————————————————————————————————————	25,97 	23,76 — 22,22 22,09 21,54 21,27 20,80 19,99 19,05 17,91 16,74 15,51 14,68	21,65 	19,64 	17,72 16,45 16,18 16,05 15,50 15,23 14,76 13,95 13,01 11,87 10,70 9,47 8,64	15,90 14,63 14,36 14,23 13,68 13,41 12,94 12,13 11,19 10,05 8,88 7,65 6,82	14,19 	12,57 11,55 11,30 11,03 10,90 10,35 10,08 9,61 8,80 7,86 6,72 5,55 4,22 3,39	11,04 10,02 9,77 9,50 9,37 8,82 8,55 8,08 7,27 6,33 5,19 4,02 2,79 1,96	9,62 8,60 8,35 8,08 7,95 7,40 7,13 6,66 5,85 4,91 3,77 2,60 1,37	8,30 7,28 7,03 6,76 6,63 6,08 5,81 5,34 4,53 3,59 2,45 1,28	7,07 6,05 5,80 5,53 5,40 4,85 4,58 4,11 3,30 2,36 1,22	5,94 4,92 4,67 4,40 4,27 3,72 3,45 2,98 2,17 1,23	4,91 3,89 3,64 3,37 3,24 2,69 2,42 1,95 1,14	3,98 2,96 2,71 2,44 2,31 1,76 1,49 1,02 — — —	3,14 2,12 1,87 1,60 1,47 0,92 — — — —	2,40 1,38 1,13 0,86 — — — — —
351 377	18,59	16,29 14,81	14,08	11,97	9,96 8,46	8,04 6,56	6,22 4,74	4,51 3,03	2,79	1,36	_	_	_	_	_	_		_
407	15,26	12,96	10,75	8,64	6,63	4,71	2,89	1,18		_	_	_	_		_	=	_	
426 508	14,02	11,72 5,70	9,51 3,49	7,40 1,38	5,39	3,47	1,65				_		_	_	_	_	_	_

Примечание. Здесь и далее в разд. 8.8 объемы приведены в м⁸/100 м.

ОБЪЕМЫ ВНУТРЕННЕГО ПРОСТРАНСТВА И МЕТАЛЛА ОБСАДНЫХ ТРУБ

Таблица 8.13

		06:	ьем	
Днаметр труб, мм	Толщина стенки, мы	внутреннего пространства	металла труб	
114,3	5,2	0,84	0,17	
	5,7	0,83	0,20	
	6,4	0,81	0,22	
	7,4	0,77	0,26	
	8,6	0,74	0,29	
	10,2	0,69	0,34	
127,0	5,6	1,05	0,22	
	6,4	1,02	0,25	
	7,5	0,98	0,29	
	9,2	0,92	0,35	
	10,7	0,87	0,40	
	12,4	0,82	0,45	
139,7	5,8	1,29	0,25	
	6,2	1,27	0,27	
	7,0	1,24	0,30	
	7,7	1,21	0,33	
	9,2	1,15	0,39	
	10,5	1,10	0,44	
	12,1	1,05	0,49	
146,1	5,8	1,42	0,26	
	6,5	1,39	0,29	
	7,0	1,37	0,31	
	7,7	1,34	0,34	
	8,5	1,31	0,37	
	9,5	1,27	0,41	
	10,7	1,22	0,46	
168,3	6,2	1,91	0,32	
	7,3	1,85	0,38	
	8,1	1,82	0,41	
	8,9	1,78	0,45	
	9,8	1,74	0,49	
	10,6	1,70	0,53	
	12,1	1,63	0,60	
	13,1	1,58	0,65	
177,8	5,9	2,16	0,33	
	6,9	2,11	0,38	
	7,6	2,07	0,42	
	8,4	2,03	0,46	
	9,2	1,99	0,50	
	10,4	1,93	0,56	
	11,5	1,88	0,61	
	12,1	1,85	0,64	
	12,7	1,85	0,67	
	13,7	1,82	0,72	
	15,0	1,77	0,78	
	15,9	1,71	0,82	

Продолжение табл. 8.13

		Of	ьем
Диаметр труб, мм	Толщина, стенки, мм	внутреннего пространства	металла труб
177,8	16,3	1,66	0,83
	17,5	1,60	0,89
	18,5	1,55	0,94
	19,1	1,53	0,96
	20,6	1,46	1,03
	22,2	1,39	1,10
193,7	6,4	2,57	0,39
	7,6	2,50	0,46
	8,3	2,46	0,50
	9,5	2,39	0,57
	10,9	2,32	0,64
	11,7	2,28	0,68
	12,7	2,22	0,74
	15,1	2,10	0,86
219,1	6,7	3,32	0,47
	7,7	3,26	0,53
	8,9	3,18	0,61
	10,2	3,10	0,69
	10,8	3,06	0,73
	11,4	3,02	0,77
	12,4	2,96	0,83
	12,7	2,94	0,85
	13,8	2,88	0,91
	14,2	2,85	0,94
244,5	7,1	4,16	0,55
	7,9	4,10	0,61
	8,9	4,03	0,68
	9,4	4,00	0,71
	10,0	3,96	0,75
	11,1	3,88	0,83
	12,0	3,82	0,89
	13,8	3,69	1,02
	15,1	3,60	1,11
	15,9	3,55	1,16
	19,1	3,34	1,37
273,1	7,1 7,8 8,9 10,2 11,4 12,6 13,8 15,1 16,5 17,1 17,8 18,6 19,1 20,2	5,26 5,20 5,11 5,01 4,92 4,82 4,73 4,63 4,52 4,48 4,43 4,36 4,34	0,61 0,67 0,76 0,86 0,95 1,05 1,14 1,24 1,35 1,39 1,44 1,51 1,53

Продолжение табл. 8.13

		06	ъем
Днаметр труб, мм	Толщина, етенки, мм	внутреннего пространства	металла труб
298,5	7,6	6,30	0,72
	8,5	6,22	0,80
	9,5	6,13	0,89
	11,1	5,99	1,03
	12,4	5,88	1,14
	13,6	5,78	1,24
	14,8	5,67	1,36
323,9	7,9	7,45	0,79
	8,5	7,39	0,85
	9,5	7,30	0,94
	9,9	7,26	0,98
	11,0	7,15	1,09
	12,4	7,02	1,22
	14,0	6,87	1,37
339,7	8,4	8,18	0,90
	9,7	8,05	1,03
	10,9	7,93	1,15
	12,2	7,80	1,28
	13,1	7,71	1,37
	14,0	7,62	1,46
	14,7	7,55	1,53
	15,4	7,49	1,59
	15,9	7,45	1,63
	17,1	7,33	1,75
	18,3	7,22	1,86
351,0	9,0	8,70	0,97
	10,0	8,60	1,07
	11,0	8,50	1,17
	12,0	8,39	1,28
377,0	9,0	10,12	1,04
	10,0	9,98	1,18
	11,0	9,89	1,27
	12,0	9,79	1,38
406,4	9,5	11,78	1,22
	11,1	11,59	1,41
	12,6	11,41	1,59
	16,7	10,92	2,08
426, 0	10,0	12,94	1,31
	11,0	12,81	1,44
	12,0	12,68	1,57
473,1	11,1	15,96	1,66
508,0	11,1	18,52	1,82
	12,7	18,28	2,02
	16,1	17,77	2,53
762,0	25,4	39,70	6,05

Примечание. Толщина зарубежных обсадных труб приведена с округлением до $0.1\,$ мм.

объем межколонного пространства

Таблица 8.14

Диаметр	Толщина	Ди	аметр в	нутрира	еполож	енных с	бсадны	труб,	MM
труб, мм	стенки, мм	114	127	140	146	168	178	194	211
168,3	6,2 7,3 8,1 8,9 9,8 10,6 12,1 13,1	0,88 0,82 0,79 0,75 0,71 0,67 0,60 0,55	0,64 0,58 0,54 0,50 0,46 0,42 0,36 0,31	-	-				
177,8	5,9 6,9 7,6 8,4 9,2 10,4 11,5 12,7 13,7 15,0 15,9 16,3 17,5 18,5	1,13 1,08 1,04 1,00 0,96 0,90 0,85 0,82 0,79 0,74 0,68 0,64 0,63 0,57 0,52	0,89 0,84 0,76 0,72 0,66 0,61 0,58 0,55 0,50 0,44 0,40 0,39 0,33	0,62 0,57 0,53 0,49 0,45 0,39 0,34 0,31 — — —					
193,7	6,4 7,6 8,3 9,5 10,9 11,7 12,7	1,54 1,47 1,43 1,36 1,29 1,25 1,19 1,07	1,30 1,23 1,19 1,11 1,04 1,00 0,95 0,83	1,03 0,96 0,92 0,84 0,77 0,73 0,68 0,56	0,89 0,82 0,78 0,70 0,63 0,59 0,54 0,42				-
219,1	6,7 7,7 8,9 10,2 10,8 11,4 12,4 12,7 13,8 14,2	2,29 2,23 2,15 2,07 2,03 1,99 1,93 1,91 1,85 1,82	2,05 1,99 1,91 1,83 1,79 1,75 1,69 1,67 1,61 1,58	1,78 1,72 1,64 1,56 1,52 1,48 1,42 1,40 1,34 1,31	1,64 1,58 1,50 1,42 1,38 1,34 1,28 1,26 1,20 1,17	1,10 1,04 0,95 0,87 0,83 0,79 0,73 0,71 0,65 0,62	0,83 0,77 0,69 0,61 0,57 0,53 0,47		
244,5	7,1 7,9 8,9 9,4		2,89 2,83 2,76 2,73	2,62 2,56 2,49 2,46	2,48 2,42 2,35 2,32	1,93 1,87 1,80 1,77	1,67 1,61 1,54 1,51	1,21 1,15 1,08 1,05	

Диаметр	Толщина	Ди	аметр в	нутрира	сполож	енных с	бсадных	труб,	мм
труб, мм	стенки, мм	114	127	140	146	168	178	194	219
244,5	10,0 11,1 12,0 13,8 15,1 15,9		2,69 2,61 2,55 2,42 2,33 2,28 2,07	2,42 2,34 2,28 2,15 2,06 2,01 1,80	2,28 2,20 2,14 2,01 1,92 1,87 1,66	1,73 1,65 1,59 1,46 1,37 1,32 1,11	1,47 1,39 1,33 1,20 1,11 1,06 0,85	1,01 0,93 0,87 0,74 — —	
273,1	7,1 7,8 8,9 10,2 11,4 12,6 13,8 15,1 16,5 17,1 17,8 18,6 19,1 20,2			3,72 3,66 3,57 3,47 3,38 3,28 3,19 2,98 2,94 2,89 2,89 2,80 2,71	3,58 3,52 3,43 3,33 3,24 3,14 3,05 2,95 2,84 2,75 2,68 2,66 2,57	3,04 2,98 2,89 2,79 2,70 2,60 2,51 2,41 2,30 2,26 2,21 2,14 2,12 2,03	2,77 2,71 2,62 2,52 2,43 2,33 2,24 2,14 2,03 1,99 1,94 1,87 1,85 1,76	2,30 2,24 2,15 2,05 1,96 1,86 1,77 1,56 1,52 1,47 1,40 1,38 1,29	1,47 1,41 1,32 1,22 1,13 1,03 0,94 — — — —
298,5	7,6 8,5 9,5 11,1 12,4 13,6 14,8	 			4,62 4,54 4,45 4,31 4,20 4,10 3,99	4,07 4,00 3,90 3,76 3,65 3,55 3,44	3,81 3,73 3,64 3,50 3,39 3,29 3,18	3,34 3,26 3,17 3,04 2,93 2,83 2,72	2,51 2,43 2,34 2,20 2,09 1,99 1,88
323,9	7,9 8,5 9,5 9,9 11,0 12,4 14,0		-		_ _ _ _ _	5,22 5,16 5,07 5,03 4,92 4,79 4,64	4,96 4,90 4,81 4,77 4,66 4,53 4,38	4,49 4,43 4,34 4,30 4,19 4,06 3,91	3,66 3,60 3,51 3,47 3,36 3,23 3,08
339,7	8,4 9,7 10,9 12,2 13,1 14,0 14,7 15,4 15,9 17,1 18,3	-				5,95 5,82 5,70 5,57 5,48 5,39 5,32 5,26 5,22 5,10 4,99	5,69 5,56 5,44 5,31 5,22 5,13 5,06 5,00 4,96 4,84 4,73	5,22 5,09 4,97 4,84 4,75 4,66 4,59 4,53 4,49 4,37 4,26	4,39 4,26 4,14 4,01 3,92 3,83 3,76 3,70 3,66 3,54 3,43

Таблица 8.15

Диаметр	Толщина	Ди	аметр в	нутрира	сположе	енных о	бсадных	труб,	MM
труб, мм	стенки, мм	245	273	299	324	340	351	377	40
323,9	7,9 8,5 9,5 9,9 11,0 12,4 14,0	2,74 2,68 2,59 2,55 2,44 2,31 2,16	1,58 1,52 1,43 1,39 1,28 1,15 1,00	 - - - - -					
339,7	8,4 9,7 10,9 12,2 13,1 14,0 14,7 15,4 15,9 17,1 18,3	3,47 3,34 3,22 3,09 3,00 2,91 2,84 2,78 2,74 2,62 2,51	2,31 2,18 2,06 1,93 1,84 1,75 1,68 1,62 1,58 1,46 1,35	1,16 1,03 0,91 0,78 — — — — — —				— — — — — —	
351,0	9,0 10,0 11,0 12,0	4,00 3,90 3,80 3,70	2,83 2,73 2,63 2,52	1,68 1,58 1,48 1,37	_ _ _ _		_ _ _	_ _ _ _	
377,0	9,0 10,0 11,0 12,0	5,41 5,27 5,18 5,07	4,25 4,11 4,02 3,91	3,10 2,96 2,87 2,76	1,88 1,74 1,65 1,54			_ _ _ _	
406,4	9,5 11,1 12,6 16,7	7,07 6,88 6,70 6,21	5,91 5,72 5,54 5,05	4,76 4,57 4,39 3,90	3,54 3,35 3,17 2,68	2,70 2,51 2,33 1,84	2,11 1,92 1,73		
426,0	10,0 11,0 12,0	8,23 8,10 7,97	7,07 6,94 6,81	5,92 5,79 5,66	4,70 4,57 4,44	3,86 3,73 3,60	3,27 3,14 3,01	 - -	
473,1	11,1		10,09	8,94	7,72	6,89	6,29	4,80	2,9
508,0	11,1 12,7 16,1	_ _ _	<u>-</u>	_ _ _	10,28 10,04 9,53	9,44 9,20 8,69	8,95 8,71 8,20	7,36 7,12 6,61	5,5,5,5,2,4,7°

ОБЪЕМЫ ВНУТРЕННЕГО ПРОСТРАНСТВА И МЕТАЛЛА БУРИЛЬНЫХ ТРУБ

Таблица 8.16

		06	ъем			06	ъем		
Диаметр труб, мм	Толщина стенки, мм	внут- ренний	металла	Диаметр труб, мм	Толщина стенки, мм	внут- ренний	металла		
Отече	ственные,	высадка	внутрь	127,0	6,0 7,0	1,003 0,968	0,271 0,306		
42	5,0	0,077	0,060		9,0 10,0	0,934 0,900	0,340 0,374		
50	5,5	0,120	0,081		,-	0,000	, -,-,-		
60,3	7,0 9,0	0,162 0,135	0,131 0,159		Алюми	ниевые			
63,5	6,0	0,198	0,113	108,0	9,0	0,588	0,337		
73,0	7,0	0,269	0,165	114,3	10,0	0,685	0,354		
	9,0 11,0	0,234 0,202	0,200 0,232	129,0	9,0 11,0	0,995 0,888	0,382 0,446		
88,9	7,0 9,0 11,0	0,433 0,388 0,346	0,205 0,250 0,293	147,0	9,0 11,0 13,0	1,290 1,213 1,140	0,445 0,521 0,600		
101,6	7,0 8,0 9,0	0,590 0,564 0,538	0,250 0,278 0,302	170.0	15,0 17,0	1,040 0,970	0,700 0,770		
	10,0	0,512	0,327	170,0	11,0 13,0	1,700 1,620	0,630 0,710		
114,3 114,3	7,0 8,0 9,0 10,0	0,777 0,746 0,716 0,686	0,278 0,310 0,340 0,370	Зарубея	Зарубежные, высадка внутрь и нару				
ŕ	11,0	0,658	0,400	60,3	4,8 7,1	0,200	0,100 0,120		
127,0	7,0 8,0 9,0 10,0	0,988 0,953 0,920 0,886	0,306 0,341 0,376 0,409	73,0	5,5 9,2	0,296 0,236	0,110 0,185		
139,7	8,0 9,0	1,182 1,144	0,395 0,432	88,9	6,5 9,4 11,4	0,454 0,390 0,346	0,167 0,234 0,278		
0	10,0	1,107	0,472	101,6	6,7 8,4 10,9	0,612 0,564 0,532	0,199 0,246 0,280		
	твенные, замками, т			114,3	6,9 8,6	0,794 0,740	0,232 0,284		
50,0	5,5	0,119	0,080		10,9	0,670	0,354		
60,3	5,0	0,199	0,100	127,0	7,5	0,985	0,282 0,340		
114,3	6,0 7,0	0,791 0,759	0,260 0,290		9,2 12,7	0,927 0,811	0,456		
	9,0 10,0	0,729 0,699	0,320 0,350	139,7	9,2 10,5	1,155 1,105	0,376 0,428		
	<u> </u>	<u> </u>				<u> </u>	<u> </u>		

объемы внутреннего пространства и металла нкт

Таблица 8.17

	_	00	бъем	Пизмето		06	ъем
Диаметр труб, мм	Толщина стенки, мм	внут- ренний	металла	Диаметр труб, мм	Толщина стенки, мм	внут- ренний	металла
26,7	2,87 3,00	0,034 0,034	0,022 0,024	73,0	7,82 9,19	0,259 0,234	0,162 0,187
33,4	3,38 3,50	0,056 0,055	0,033 0,034	88,9	10,28 5,49	0,216 0,477	0,205 0,149
42,2	3,18 3,50 3,56	0,101 0,097 0,097	0,040 0,043 0,044		6,45 7,34 8,00 9,52	0,454 0,433 0,417 0,383	0,173 0,193 0,210 0,243
48,3	3,12 3,68 4,00	0,138 0,131 0,127	0,045 0,052 0,057		10,50 11,43 12,40	0,360 0,343 0,329	0,266 0,283 0,297
60,3	4,24 4,83 5,00 5,54 6,45 7,12 8,53	0,211 0,202 0,199 0,191 0,177 0,167 0,147	0,077 0,086 0,089 0,097 0,111 0,121 0,141	101,6	5,74 6,50 6,65 8,38 9,65 10,92 6,88	0,638 0,616 0,612 0,565 0,531 0,499	0,178 0,201 0,204 0,251 0,285 0,317
73,0	5,51 7,01	0,302 0,273	0,119 0,148		7,00	0,790	0,245

объем межтрубного пространства

Таблица 8.18

Диаметр	Толщина		Наружный	диаметр	бурильных	труб, мм	
труб, мм	стенки, мм	147	140	129	127	114	102
508,0	11,1 12,7 16,1	16,81 16,57 16,06	16,95 16,71 16,20	17,20 16,96 16,45	17,23 16,99 16,48	<u>-</u>	
473,1	11,1	14,25	14,39	14,64	14,67		_
426,0	10,0	11,23	11,37	11,62	11,65	11,89	12,11
	11,0	11,10	11,24	11,49	11,52	11,76	11,98
	12,0	10,97	11,11	11,36	11,39	11,64	11,85
406,4	9,5	10,07	10,21	10,46	10,49	10,73	10,95
	11,1	9,89	10,03	10,28	10,31	10,55	10,77
	12,6	9,70	9,84	10,09	10,12	10,36	10,58
	16,7	9,21	9,35	9,60	9,63	9,87	10,09
377,0	9,0	8,41	8,55	8,80	8,83	9,07	9,29
	10,0	8,27	8,41	8,66	8,69	8,93	9,15
	11,0	8,18	8,32	8,57	8,60	8,84	9,06
	12,0	8,07	8,21	8,46	8,49	8,73	8,95
351,0	9,0	6,99	7,13	7,38	7,41	7,65	7,87
	10,0	6,89	7,03	7,28	7,31	7,55	7,77

Днаметр	Толщина		Наружный	днаметр	бурильных	труб, мм	
труб, мм	стенки, мм	147	140	129	127	114	102
351,0	11,0 12,0	6,79 6,68	6,93 6,82	7,18 7,09	7,21 7,12	7,45 7,34	7,67 7,56
339,7	8,4 9,7 10,9 12,2 13,1 14,0 14,7 15,4 15,9 17,1 18,3	6,47 6,34 6,21 6,09 6,00 5,84 5,78 5,74 5,62	6,61 6,48 6,35 6,23 6,14 6,05 5,98 5,92 5,88 5,76 5,65	6,86 6,73 6,60 6,48 6,39 6,30 6,23 6,17 6,13 6,01 5,90	6,89 6,76 6,63 6,51 6,42 6,33 6,26 6,20 6,16 6,04 5,93	7,13 7,00 6,87 6,75 6,66 6,57 6,50 6,44 6,40 6,28 6,17	7,35 7,22 7,09 6,97 6,88 6,79 6,72 6,66 6,62 6,50 6,39
323,9	7,9 8,5 9,5 9,9 11,0 12,4 14,0	5,70 5,68 5,59 5,54 5,44 5,31 5,16	5,84 5,82 5,73 5,68 5,58 5,45 5,30	6,09 6,07 5,98 5,93 5,83 5,70 5,55	6,12 6,10 6,01 5,96 5,86 5,73 5,58	6,36 6,34 6,25 6,20 6,10 5,97 5,82	6,58 6,56 6,47 6,42 6,32 6,19 6,04
298,5	7,6 8,5 9,5 11,1 12,4 13,6 14,8	4,59 4,51 4,42 4,28 4,17 4,07 3,96	4,73 4,65 4,56 4,42 4,31 4,21 4,10	4,98 4,90 4,81 4,67 4,56 4,46 4,35	5,01 4,93 4,84 4,70 4,59 4,49 4,38	5,25 5,17 5,08 4,94 4,83 4,73 4,62	5,47 5,39 5,30 5,16 5,05 4,95 4,84
273,1	7,1 7,8 8,9 10,2 11,4 12,6 13,8 15,1 16,5 17,1 17,8 18,6 19,1 20,2	3,55 3,49 3,40 3,30 3,21 3,11 3,02 2,92 2,81 2,77 2,72 2,65 2,63 2,54	3,69 3,63 3,54 3,44 3,35 3,25 3,16 3,06 2,95 2,91 2,91 2,77 2,68	3,94 3,88 3,79 3,69 3,60 3,50 3,41 3,31 3,20 3,16 3,11 3,04 3,02 2,93	3,97 3,91 3,82 3,72 3,63 3,53 3,44 3,34 3,23 3,19 3,14 3,07 3,05 2,96	4,21 4,15 4,06 3,96 3,87 3,77 3,68 3,58 3,47 3,43 3,38 3,31 3,29 3,20	4,43 4,37 4,28 4,18 4,09 3,99 3,90 3,69 3,69 3,65 3,60 3,53 3,51 3,42
244,5	7,1 7,9 8,9 9,4 10,0 11,1 12,0 13,8 15,1 15,9	2,44 2,38 2,31 2,28 2,24 2,16 2,10 1,98 1,89 1,84 1,63	2,58 2,52 2,45 2,42 2,38 2,30 2,24 2,12 2,03 1,98 1,77	2,83 2,77 2,70 2,67 2,63 2,55 2,49 2,37 2,28 2,23 2,02	2,85 2,80 2,73 2,70 2,66 2,58 2,52 2,40 2,31 2,26 2,05	3,10 3,04 2,97 2,94 2,90 2,82 2,76 2,64 2,55 2,50 2,29	3,32 3,26 3,19 3,16 3,12 3,04 2,98 2,86 2,77 2,72 2,51

Таблица 8.19

Диаметр	Толщина		Наружный	диаметр	бурильных	труб, мм	
обсадных труб, мм	стенки, мм	127,0	I14,3	101,6	88,9	73,0	60,3
193,7	7,0 7,6 8,3 9,5 10,9 11,7 12,7	1,24 1,21 1,17 1,10 1,03 0,99 0,93	1,48 1,45 1,41 1,34 1,27 1,23 1,17	1,70 1,67 1,63 1,56 1,49 1,45 1,39 1,27	1,88 1,85 1,81 1,74 1,67 1,63 1,57 1,45	2,09 2,06 2,02 1,95 1,88 1,84 1,78 1,66	2,23 2,20 2,16 2,09 2,02 1,98 1,92 1,80
177,8	5,9 6,9 7,6 8,4 9,2 10,4 11,5 12,1 12,7 13,7 15,0 16,3 17,5 18,5 19,1 20,6 22,2		1,11 1,06 1,02 0,98 0,94 0,88 0,83 0,80 0,77 0,72 0,40	1,33 1,28 1,24 1,20 1,16 1,10 1,05 1,02 0,99 0,94 0,88 0,84 0,83 0,77 0,72 —	1,51 1,46 1,42 1,38 1,34 1,28 1,23 1,20 1,17 1,12 1,06 1,02 1,01 0,95 0,90 0,88 0,81 0,74	1,72 1,67 1,63 1,59 1,55 1,49 1,44 1,41 1,38 1,33 1,27 1,23 1,22 1,16 1,11 1,09 1,02 0,95	1,86 1,81 1,77 1,73 1,69 1,63 1,58 1,55 1,55 1,47 1,41 1,37 1,36 1,30 1,25 1,23 1,16 1,09
168,3	6,2 7,3 8,1 8,9 9,8 10,6 12,1 13,1		111111		1,25 1,20 1,16 1,12 1,08 1,05 0,98 0,93	1,46 1,41 1,37 1,33 1,29 1,26 1,19 1,14	1,60 1,55 1,51 1,47 1,43 1,40 1,33 1,28
146,0	5,8 6,5 7,0 7,7 8,5 9,5	= = = = =				0,98 0,95 0,93 0,90 0,86 0,83 0,78	1,12 1,09 1,07 1,04 1,00 0,97 0,92
139,7	5,8 6,2 7,0 7,7 9,2 10,5 12,1	= = = = = = = = = = = = = = = = = = = =	111111		-	0,85 0,83 0,80 0,77 0,71 0,66 0,61	0,99 0,97 0,94 0,91 0,85 0,80 0,75

Продолжение табл. 8.19

Диаметр	Толщина		Наружный дваметр бурильных труб, мм						
обсадных труб, мм	отенки, мм	127,0	114,3	101,6	88,9	73,0	60,3		
127,0	5,6 6,4 7,5 9,2 10,7 12,4	11111	_ _ _ _ _			1	0,75 0,72 0,68 0,62 0,57 0,52		
114,3	5,2 5,7 6,4 7,4 8,6 10,2	_ _ _ _ _	_ _ _ _ _		_ _ _ _ _	— — — —	0,54 0,53 0,51 0,47 0,44 0,39		

Таблица 8.20

Диаметр	Толщина		Haj	ружный дна	метр НКТ,	мм	
труб, мм	стенки, мм	33,4	42,2	48,3	52,4	60,3	73,0
88,9	5,48 6,45 7,34 9,52 12,09 12,95 13,46	0,389 0,366 0,345 0,296 0,241 0,224 0,214	0,337 0,314 0,293 0,244 0,189 0,172 0,162	0,294 0,271 0,250 0,200 0,146 0,129 0,119			
101,6	5,74 6,65 7,26 8,07 8,38	0,550 0,525 0,508 0,486 0,478	0,498 0,473 0,456 0,434 0,426	0,455 0,429 0,412 0,390 0,382			
114,3	5,20 5,68 6,35 6,88 7,36 8,55 9,47 10,19	0,760 0,744 0,723 0,706 0,691 0,654 0,626 0,605 0,584	0,708 0,692 0,671 0,654 0,639 0,602 0,474 0,553 0,532	0,665 0,649 0,628 0,611 0,596 0,559 0,531 0,510 0,488	0,632 0,616 0,595 0,578 0,563 0,526 0,498 0,477 0,456	0,562 0,546 0,525 0,508 0,493 0,456 0,498 0,407 0,386	0,429 0,413 0,392 0,375 0,360 0,323 0,295 0,274 0,252

Таблица 8.21

Дизметр	Голынна		Hal	ужнь й диа	метр НКТ,	мм	
труб, мы	стенки, мм	48,3	60,3	73.0	88,9	101,6	114,3
127,0	5,6 6,4 7,5 9 2 10,7 12,4	0 871 0 840 0 802 0 741 0,6° 2 0 ° °	0,768 0,738 0,699 0,641 0,559 0,643	0,635 0,605 0,503 0,503 0,456 0,410		- - -	
139,7	5,8 6,2 7,0 7,7 9,2 10,5 12,1	1,106 1,090 1,059 1,030 0,974 0,922 0,865	1,003 0,987 0,956 0,927 0,871 0,819 0,762	0,870 0,854 0,823 0,794 0,738 0,686 0,629	0,670 0,652 0,621 0,592 0,536 0,484 0,427	0,478 0,462 0,431 0,402 0,346 0,294 0,237	
146,0	5,8 6,5 7,1 7,7 8,5 9,5 10,7	1,235 1,207 1,182 1,152 1,110 1,079 1,029	1,132 1,104 1,079 1,049 1,007 0,976 0,926	0,999 0,971 0,946 0,916 0,874 0,843 0,793	0,797 0,769 0,744 0,714 0,672 0,641 0,591	0,607 0,579 0,554 0,524 0,482 0,451 0,401	
168,3	6,2 7,3 8,1 8,9 9,8 10,6 12,1 13,1	1,724 1,671 1,635 1,594 1,554 1,517 1,449 1,403	1,622 1,568 1,532 1,491 1,451 1,414 1,346 1,301	1,489 1,435 1,399 1,358 1,318 1,281 1,213 1,167	1,287 1,223 1,197 1,156 1,116 1,079 1,011 0,966	1,097 1,043 1,007 0,966 0,926 0,889 0,821 0,776	0,881 0,828 0,791 0,750 0,711 0,673 0,606 0,560
177,8	5,9 6,9 7,6 8,4 9,2 10,4 11,5 12,7 13,7 15,0 16,3 17,5 18,5 19,1 20,6 22,2	1,983 1,929 1,892 1,851 1,813 1,755 1,699 1,671 1,644 1,593 1,534 1,493 1,475 1,421 1,372 1,350 1,280 1,213	1,881 1,826 1,789 1,749 1,710 1,652 1,596 1,541 1,490 1,431 1,390 1,372 1,318 1,269 1,247 1,177 1,110	1,747 1,693 1,656 1,616 1,577 1,519 1,463 1,435 1,408 1,357 1,298 1,257 1,239 1,185 1,136 1,114 1,044 0,977	1,545 1,491 1,455 1,414 1,375 1,317 1,261 1,233 1,206 1,155 1,096 1,055 1,037 0,983 0,934 0,912 0,842 0,775	1,355 1,301 1,264 1,224 1,185 1,127 1,071 1,043 1,016 0,965 0,966 0,865 0,865 0,867 0,793 0,744 0,722 0,652 0,585	1,140 1,086 1,048 1,008 0,970 0,912 0,856 0,827 0,801 0,750 0,690 0,649 0,632 0,578 0,529 0,507
193,7	7,0 7,6 8,3	2,350 2,318 2,278	2,247 2,215 2,176	2,114 2,082 2,041	1,912 1,880 1,840	1,722 1,690 1,650	1,507 1,475 1,435

Диаметр	Толщина		Har	ужный диа	метр НКТ,	MM	
труб, мм	стенки, мм	48,3	60,3	73,0	88,9	101,6	114,3
193,7	9,5 10,9 11,7 12,7 15,1	2,212 2,136 2,095 2,041 1,916	2,109 2,033 1,992 1,938 1,813	1,976 1,900 1,859 1,805 1,680	1,774 1,698 1,657 1,603 1,478	1,584 1,508 1,467 1,413 1,288	1,369 1,293 1,252 1,198 1,072
219,1	6,7 7,7 8,9 10,2 10,8 11,4 12,4 12,7 13,8 14,2		3,037 2,971 2,894 2,817 2,778 2,738 2,681 2,661 2,593 2,573	2,904 2,838 2,761 2,684 2,645 2,605 2,548 2,528 2,460 2,440	2,702 2,636 2,559 2,482 2,443 2,403 2,346 2,326 2,258 2,238	2,512 2,446 2,369 2,292 2,253 2,213 2,156 2,136 2,068 2,048	2,296 2,231 2,153 2,077 2,037 1,998 1,940 1,920 1,853 1,833
244,5	7,1 7,9 8,9 9,4 10,0 11,1 12,0 13,8 15,1 15,9 19,1		3,877 3,820 3,747 3,715 3,670 3,599 3,533 3,406 3,320 3,269 3,060	3,744 3,687 3,614 3,582 3,537 3,466 3,400 3,273 3,187 3,136 2,927	3,542 3,485 3,412 3,380 3,335 3,264 3,198 3,071 2,985 2,934 2,725	3,352 3,295 3,222 3,190 3,145 3,074 3,008 2,881 2,795 2,744 2,535	3,136 3,080 3,007 2,974 2,930 2,858 2,793 2,665 2,579 2,528 2,319
273,1	7,1 7,8 8,9 10,2 11,4 12,6 13,8 15,1 16,5 17,1 17,8 18,6 19,1 20,2		4,979 4,921 4,833 4,731 4,631 4,542 4,443 4,346 4,240 4,201 4,145 4,080 4,050 3,962	4,845 4,788 4,700 4,598 4,498 4,409 4,310 4,213 4,107 4,068 4,012 3,947 3,917 3,829	4,644 4,586 4,498 4,397 4,296 4,207 4,108 4,011 3,905 3,866 3,810 3,745 3,715 3,627	4,453 4,396 4,308 4,206 4,106 4,017 3,918 3,821 3,715 3,676 3,620 3,555 3,525 3,437	4,238 4,180 4,092 3,991 3,801 3,703 3,605 3,499 3,460 3,404 3,340 3,310 3,222
298,4	7,6 8,5 9,5 11,1 12,4 13,6 14,8		6,015 5,940 5,846 5,713 5,595 5,497 5,393	5,882 5,807 5,713 5,580 5,462 5,364 5,260	5,680 5,605 5,511 5,378 5,260 5,162 5,058	5,490 5,415 5,321 5,188 5,070 4,972 4,868	5,274 5,200 5,106 4,973 4,854 4,756 4,653
32 3,9	7,9 8,5 9,5		question	_	6,836 6,776 6,679	6,646 6,586 6,488	6,431 6,371 6,273

7 Заказ 862

Продолжение табл. 8.21

Диаметр	Толщина		Hap	ужный диа	аметр НКТ,	мм	
труб, мм	стенки, " мм	48,3	60,3	73,0	88,9	101,6	114,3
323,9	9,9 11,0 12,4 14,0	 			6,641 6,536 6,404 6,255	6,450 6,345 6,213 6,064	6,235 6,130 6,000 6,850
339,7	8,4 9,7 10,9 12,2 13,1 14,0 14,7	- - - - - -	— — — —	- - - - -	7,573 7,444 7,317 7,190 7,105 7,015 6,945	7,383 7,254 7,127 7,000 6,915 6,825 6,755	7,167 7,039 6,911 6,785 6,700 6,610 6,540
-	15,4 17,1 18,3		<u> </u>	_	6,891 6,715 6,601	6,701 6,525 6,411	6,486 6,309 6,195

объемы внутреннего пространства и металла убт

Таблица 8.22

Диаме	тр, мм	Объ	ем	Диаме	тр, мм	O6	ъем
наруж- ный	внутрен- ний	внут- реннего простран- ства	металла	наруж- ный	внутрен- ний	внут- реннего простран- ства	металла
73,0	35,0	0,10	0,32	177,8	57,1	0,26	2,22
79,4	31,7	0,08	0,41	,	71,4	0,40	2,08
88,9	38,1	0,11	0,51		80,0	0,50	1,98
•	45,0	0,16	0,46	104.4	90,0	0,64	1,84
104,8	50,8	0,20	0,66	184,4	71,4	0,40	2,27
120,6	50,8	0,20	0,94	190,5	71,4	0,40	2,45
•	57,1	0,26	0,88	100.0	76,2	0,46	2,39
	63,5	0,32	0,82	196,8	71,4 76,2	0,40	2,64
127,0	57,1	0,26	1,01	•	90,4	0,46 0,64	2,58 2,40
133,0	64,0	0,32	1,07	203,2	71,4	0.40	2,84
139,7	57,1	0,26	1,27	200,2	76,2	0,46	2,78
146,0	57,1	0,26	1,41		80,0	0,50	2,74
	68,3	0,37	1,30		90,4	0,64	2,60
	74,0	0,42	1,24	_	100,0	0,79	2,45
150 4	76,2	0,46	1,21	209,6	71,4	0,40	3,05
152,4	57,1 71,4	0,26	1,56		76,2	0,46	2,99
150 7	1 '	1 '	1,42	215,9	71,4	0,40	3,26
158,7	57,1 71,4	0,26	1,72 1,58	228,6	71,4	0,40	3,71
165,1	57,1	0,40	1		76,2 90,4	0,46	3,65
100,1	71,4	0,20	1,88 1,74	041.2	76.2	0,64	3,47
171,4	57,1	0,26	2,05	241,3	100,0	0,46	4,12 3,80
•••,•	71,4	0,40	1,91	247,6	76,2	0,46	4,36

Продолжение табл. 8.22

Диаме	тр, мм	06	ъем	Днаметр, мм		Объем	
наруж- ный	внутрен- ний	внут- реннего простран ства	металла	наруж- ный	внутрен- ний	внут- реннего простран ства	металла
247,6 254,0	100,0 76,2 100,0	0,79 0,46 0,79	4,03 4,61 4,28	279,4 285,7	76,2 100,0 100,0	0,46 0,79 0,46	5,67 5,34 5,95

объем затрубного пространства скважина—убт

Таблица 8.23

Диаметр		Диаметр скважины, мм										
УБТ, мм	500	475	450	425	400	375	350	325	300			
280 254 241 229 216 210 203 197 184 178 165 152	13,5 14,6 15,1 15,5 16,0 16,2 16,4 16,6 —	11,6 12,7 13,1 13,6 14,1 14,3 14,5 14,7 ————————————————————————————————————	9,8 10,8 11,3 11,8 12,3 12,5 12,7 12,9 ————————————————————————————————————	8,1 9,1 9,6 10,1 10,5 10,7 10,9 11,1 11,5 11,7 12,1	6,4 7,5 8,5 8,5 9,1 9,3 9,5 9,9 10,1 10,4	4,9 6,0 6,5 6,9 7,4 7,6 7,8 8,0 8,4 8,6 8,9	3,5 4,6 5,0 5,5 6,0 6,2 6,4 6,6 7,0 7,1 7,5 7,8 8,0	2,2 3,2 3,7 4,6 4,9 5,1 5,6 5,8 6,2 6,5 6,7	2,00 2,50 2,96 3,41 3,62 3,83 4,03 4,40 4,59 4,93 5,25 5,40			

Продолжение табл. 8.23

		, ,	Циаметр ск	важины, м	M	
Диаметр УБТ, мм	275	250	225	200	175	150
241	1,36				_	
229	1,83	0,80			_	_
216	2,28	1,25			_	_
210	2,49	1,46				
203	2,70	1,67	0,70			
197	2,90	1,87	0,90	_		_
184	3,27	2,24	1,30		_	_
178	3,46	2,43	1,50	0,66	_	_
165	3,80	2,77	1,84	1,00		
152	4,12	3,09	2,16	1,32	0,58	_
146	4,27	3,24	2,31	1,47	0,73	_
133	<u> </u>	3,52	2,59	1,75	1,01	0,38
120			2,84	2,00	1,26	0,63
105			3,12	2,28	1,54	0,91
89		l →	3,36	2,52	1,78	1,15
79		_	3,49	2,65	1,91	1,28
73			3,56	2,72	1,98	1,35

9. ИНСТРУМЕНТ ДЛЯ ЛИКВИДАЦИИ АВАРИЙ

9.1. МЕТЧИКИ И КОЛОКОЛА

МЕТЧИКИ УНИВЕРСАЛЬНЫЕ

OCT 26-02-1273-75, OCT 26-02-1274-75

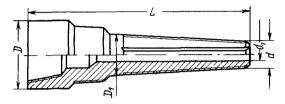


Рис. 9.1. Метчик универсальный

Таблица 9.1

Шифр	d	D_1	D	d ₁	L	Q, кН	Macca, kr	Резьба
MBY 20-45 MBY 22-54 MBY 32-73 MBY 58-94 MBY 74-120 MBY 100-142 MBY 127-164 MBY 36-60 MBY 46-80 MBY 69-100 MBY 85-127	20 22 32 58 74 100 127 36 46 69 85	45 54 73 94 120 142 164 60 80 100	80 95 108 120 178 203 220 65 90 108 134	10 10 14 22 32 50 70 15 17 20	680 800 955 875 1090 1030 930 370 455 450 560	300 420 640 820 1150 1400 1450 300 450 600 750	9 13 24 34 75 96 115 7 11 19 34	3-62 3-76 3-88 3-102 3-147 3-171 3-189 3-50 3-76 3-88 3-117

Примечания 1. Размеры в мм. 2. Q — грузоподъемность метчика. 3. Метчики правые и девые.

МЕТЧИКИ СПЕЦИАЛЬНЫЕ

OCT 26-02-1274-75, OCT 26-02-1273-75

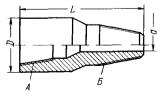


Рис. 9.2. Метчик специальный

Таблица 9.2

	_		Длина	Грузо-	Mac-	Pes	вьба
Шнфр	D, мм	D, MM d, MM		подъем- ность, кН	са, кг	A	Б
MC3-66 MC3-76 MC3-86 MC3-88 MC3-101 MC3-102 MC3-108 MC3-117 MC3-121 MC3-122 MC3-133 MC3-140 MC3-147 MC3-152 MC3-161 MC3-171	80 95 108 108 118 120 133 140 146 155 178 178 197 185 203	25 35 32 35 50 60 70 70 70 70 100 115 120	260 265 270 285 280 280 320 290 285 330 320 320 320 320 320	1000 1600 1600 2000 2000 2000 2650 2650 2650 2750 3300 3700 3300 3700	6 7 7 10 11 11 16 15 17 20 19 25 24 31 25 40	3-66 3-76 3-86 3-88 3-101 3-102 3-108 3-117 3-121 3-122 3-133 3-140 3-147 3-152 3-161 3-171	3-66 3-76 3-86 3-88 3-101 3-102 3-108 3-117 3-121 3-122 3-133 3-140 3-147 3-152 3-161 3-171
MЭC-B42 MЭC-48 MЭC-848 MЭC-60 MЭC-B60 MЭC-73 MЭC-B73 MЭC-B73 MЭC-B9 MЭC-102 MЭC-102 MЭC-114 MЭC-B114	65 65 90 90 90 90 108 108 134 134	25 25 30 30 40 40 55 55 60 70	230 230 230 260 260 260 260 260 280 280 280 280	250 350 350 550 550 750 750 1100 1100 1250 1250 1500	4 4 8 7 7 8 10 11 14 16 18	3-50 3-50 3-50 3-76 3-76 3-76 3-88 3-88 3-117 3-117 3-117	B-42 48 B-48 60 B-60 73 B-73 89 B-89 102 B-102 114 B-114

Примечание У метчиков типа МЭС резьба Б \rightleftharpoons по ГОСТ 633—80, остальные резьбы по ГОСТ 631—75.

метчики ловильные

FOCT 8433-81

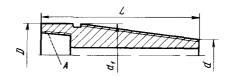


Рис. 9.3. Метчик ловильный

Таблица 9.3

Шифр	d, мм	d_1 , MM	D, мч	<i>L</i> , мм	Macca, Kr	Резьба <i>А</i>
А1 A2 Б1 Б2 К1 В1—В3 Д1 Д2 Д3 Д4 Д5	12 14 28 41 41 19 49 70 88 107 126	32 36 41 54 57 61 70 86 104 124	33 44 42 55 58 66 71 87 105 125	250 280 160 160 215 430 220 190 200 200	1 1 2 2 10 3 5 10 12	28×24,5 * 33×29,5 * 28×24,5 28×24,5 T-50 3-50 3-50 3-50 3-50 3-50 3-50 3-50

Примечания 1 Резьба $28 \times 24,5$ и $33 \times 29,5$ по ГОСТ 8467-83. 2. Резьба **Т-50** трубная по ГОСТ 7918-75 3. Звездочкой обозначена ниппельная резьба.

колокола ловильные

FOCT 8565-81

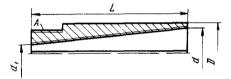


Рис. **9.4.** Колокол ловильный по ГОСТ 8565—81

Таблица 9.4

Шифр	Захватывае- мый диаметр	d, mm	<i>d</i> ₁ , мм	Д , мм	<i>L</i> , мм	Mac- ca, кг	Резьба <i>А</i> по ГОСТ 6238—77
A1	32—44	46	29	57	135	1	$52,0\times50,5$ $68,5\times67,0$ $68,5\times67,0$ $84,5\times83,0$
A2	41—66	67	37	74	240	3	
B1—B3	40—59	60	36	76	190	4	
B4, B5	48—85	86	45	108	330	15	

КОЛОКОЛА ЛОВИЛЬНЫЕ

OCT 26-02-1275-75

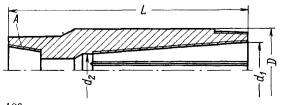


Рис. 9.5. Колокол ловильный по ОСТ 26-02-1275—75

Таблица 9.5

Шифр	<i>d</i> ₁ , мм	d ₂ , mm	<i>D</i> , мм	Д, мм	Грузоподъ- емность, кН	Mac- ca, kr	Резьба <i>А</i>
K 42-25	42	25	65	385	250	7	3-50
K 50-34	50	34	65	340	350	5	3-50
K 58-40	58	40	90	490	450	15	3-66
K 70-52	70	52	90	510	650	14	3-66
K 85-64	85	64	102	550	750	18	3-76
K 100-78	100	78	122	595	850	27	3-88
K 110-91	110	91	132	555	1000	27	3-88
K 125-103	125	103	148	560	1100	31	3-121
K 135-113	135	113	170	635	1250	33	3-121
K 150-128	150	128	194	655	1350	49	3-147
K 174-143	174	143	220	800	1500	83	3-147

9.2. ТРУБОЛОВКИ, ОВЕРШОТЫ

ТРУБОЛОВКИ ВНУТРЕННИЕ ОСВОБОЖДАЮЩИЕСЯ

OCT 26-16-1604-78, TY 39 01-10-717-81, TY 39-974-84

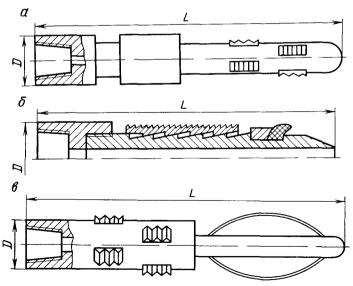


Рис. 9.6. Труболовка внутренняя освобождающаяся

Таблица 9.6

Шифр	Захватывае- мый диаметр, мм	D, MM	L, mm	Грузо- подъем- ность, кН	Macca, kr	Резьб а
	Упираю	щиеся в т	орец трубі	ы (рис. 9.0	δ, a)	
TBM-60 TBM-73 TBM-89 TBM-102 TBM-114	47—57 57—66 71—82 84—96 95—108	92 92 110 132 132	1540 1510 1440 1680 2320	250 400 600 800 1000	28 38 50 90 110	3-76 3-76 3-76 3-88 3-88
То	же, с гермети	изацией тр	убного пр	остранства	(рис. 9.6	, δ)
TBP-48 TBP-60 TBP-73 TBP-89 TBP-102 TBP-114 TBC-140	40—42 50—52 59—63 73—77 88—90 99—102 116—128	64 80 95 108 108 146 178	460 540 630 925 990 990 1000	250 450 550 1200 1500 2000 2500	4 9 15 23 43 56 76	HKT 48 3-66 3-76 3-88 3-88 3-121 3-147
3a	аводимые внут	грь трубы	на любую	глубину	(рис. 9.6,	6)
TBM-114 TBM-127 TBM-146 TBM-168 TBM-194	95—108 104—132 118—147 136—169 158—192	95 105 120 136 160	1840 1840 1840 1840 1840	1000 1600 2000 2200 2500	70 76 96 120 150	3-76 3-88 3-88 3-88 3-88

ВНУТРЕННИЕ ТРУБОЛОВКИ ОСВОБОЖДАЮЩИЕСЯ С ГЕРМЕТИЗАЦИЕЙ ТРУБНОГО ПРОСТРАНСТВА

ФИРМА «ИНДУСТРИАЛЭКСПОРТИМПОРТ», РУМЫНИЯ

Таблица 9.7

Шифр	Диаметр), мм	_	Грузо- подъем-	Macca,	
	вахватывае- мый	корпуса	L, mm	ность, кН	KP	Резьба
28/8" 27/8" 31/2" 41/2" 41/2" 55" 51/2" 65/2" 75/8"	47—52 56—62 64—78 83—91 90—104 94—111 107—114 107—123 117—124 117—132 143—152 153—162 167—182	60 73 89 102 114 114 127 127 140 140 168 178	1250 1360 1300 1420 1575 1435 1690 1445 1690 1560 1790 1795 1810	400 800 1000 1500 1500 1500 1000 1500 150	20 31 60 90 130 59 131 87 150 94 147 178	3-66 3-76 3-102 * 3-123 * 3-102 * 3-133 * 3-102 * 3-133 * 3-103 * 3-133 * 3-133 *

Продолжение табл. 9.7

Шнфр	Диаметр	, мм		Грузо-	Macca,	
	захватывае- мый	корпуса	L, mm	подъем- ность, кН	KF	Резьба
85/8" 95/8" 103/4" 113/4" 133/8" 16"	189—209 215—232 243—259 271—286 311—323 378—393	219 245 273 298 340 406	1760 1800 1800 1800 2110 2110	1500 1500 1500 1500 1500 1500	277 369 357 385 500 590	3-133 * 3-133 * 3-133 * 3-133 * 3-133 *

Примечания. 1 Конструкцию см. на рис. 9.6, δ . 2. Звездочкой обозначена резьба укороченного профиля.

ТРУБОЛОВКИ НАРУЖНЫЕ ОСВОБОЖДАЮЩИЕСЯ

OCT 39-141-82, TV 39-01-10-494-79, TV 26-16-214-87, TV 26-02-582-74

Рис. 9.7. Труболовка наружная освобождающаяся

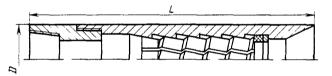


Таблица 9.8

	Диаметр	, мм		Грузо-	Mac-		
Шифр	захватыва с- мый	корпуса <i>D</i>	L. MM	подъем- ность, кН	ca, Kr	Резь ба	
THC 60-120,6	56—62	108	1563	1000	54	3-66	
THOC 120-60/95	60—95	120	700	1100	21	3-76	
THC 73-139,7	69—74	120	1570	1100	74	3-76	
THO 116-73	64—73	116	1655	350	76	3-88Л	
THC 89-158,7	85—91	140	1765	1300	111	3-88	
THO 136-89	8089	136	1900	750	115	3-88Л	
THC 102-165,1	98—105	145	1820	1400	122	3-108	
THC 114-190,5	110—118	170	1820	2000	144	3-121	
THC 127-215,9	123—131	196	1820	2700	152	3-133	
THC 140-215,9	136—144	196	1820	3000	151	3-147	
THC 147-215,9	142—150	200	1820	2700	153	3-147	
THC 168-295,3	164—171	230	1840	3900	255	3-171	

ловители плашечные наружные освобождающиеся

ТУ 26-02-221-75

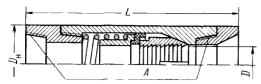


Рис. 9.8. Ловитель плашечный наружный освобождающийся

Таблица 9.9

	Диаметр,		Грузо-			
Шифр	вахватывае- мый D	кор- пуса D _Н	L, mm	подъем- ность, кН	Масса ку	Резьба А
ЛБПС 89/114-175 ЛБПС 114/140-200 ЛБПС 127/155-225 ЛБПС 140/178-245 ЛБПС 168/203-270	89—114 114—140 127—155 140—178 168—203	175 200 225 245 270	1795 1750 1870 2025 2070	800 1000 1200 1200 1600	250 220 310 315 320	140K 178K 194K 219K 245K

Примечания. 1. Резьба по ГОСТ 632 \Rightarrow 80. 2. Ловители выпускаются в односекционном исполнении с шифром ЛБП.

ТРУБОЛОВКИ НЕОСВОБОЖДАЮЩИЕСЯ

ТУ 26-16-22-77

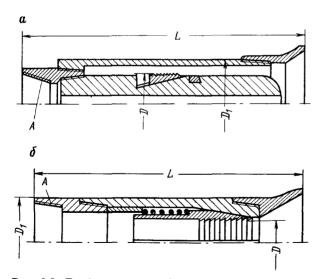


Рис. 9.9. Труболовка неосвобождающаяся 202

Таблица 9.10

	Диаметр	o, MM		Грузо-			
Шифр	захваты- ваемый <i>D</i>	кор- пуса <i>D</i> 1	L, mm	подъем- ность, кН	Масса, кг	Резьба <i>А</i>	
	В	нутренн	ие (рис. 9	9.9, a)			
TB 48-80 TB 60-92 TB 73-92 TB 89-110 TB 102-130 TB 114-130	44 56 66 82 96 108	80 92 92 110 130 130	700 1350 1350 1370 1400 1620	250 300 550 800 1000 1200	45 48 54 72 110 125	3-66Л 3-76Л 3-76Л 3-76Л 3 88Л 3-88Л	
	H	аружнь	те (рис. 9.	9, δ)			
TH3-114 TH3-146 TH3-168	48—60 60—73 60—89	95 118 138	420 740 7 70	400 400 750	11 21 35	СБТ 89Л СБТ 102Л СБТ 114Л	

Примечание. На труболовках типа ТНЗ резьба трубная по ГОСТ 631-75.

ОВЕРШОТЫ ДЛЯ БУРИЛЬНЫХ ТРУБ И УБТ

ФИРМА «ИНДУСТРИАЛЭКСПОРТИМПОРТ», РУМЫНИЯ Таблица 9.11

	Днаметр,	MM	Длина.	Macca.	
Шифр	захватываемый	корпуса	мм	KP	Резьба
N-4 ⁵ / ₈ MI-4 ⁵ / ₈ N-5 ¹ / ₁₈ N-5 ¹ / ₁₆ NI-5 ¹ / ₁₆ N-5 ¹ / ₂ N-6 MI-6 N-6 ¹ / ₁₆ N-7 ³ / ₈ MI-7 ³ / ₈ MI-7 ³ / ₈ MI-7 ³ / ₈ MI-9 N-9 N-9 ⁷ / ₁₆ N-10 ⁷ / ₁₆ N-10 ⁷ / ₁₆ MI-10 ⁷ / ₁₆	60—80 60—80 66—89 73—95 88—108 88—108 88—118 108—118 108—118 114—146 114—155 114—155 114—178 114—178 114—178 139—178 139—178 168—203 168—203	117 117 129 129 140 140 152 152 170 170 187 205 205 229 229 240 240 265 265	965 1170 988 1165 1000 1400 1163 1430 1263 1560 1280 1545 1280 1775 1340 1900 1400 1900 1420 1920	80 90 110 120 125 135 140 155 180 200 200 225 210 260 220 290 222 295 310 380	3-76 3-76 3-101 3-101 3-101 3-101 3-101 3-121 3-121 3-121 3-121 3-121 3-121 3-147 3-147 3-147 3-147 3-147 3-171

Примечания 1 Конструкцию см на рис 9 8 2 Освобождение овершота типа N=вращением вправо, MI — движением вниз с поворотом

ОВЕРШОТЫ ДЛЯ УБТ ТИПА «СЛИП-БЭКЕТ»

ФИРМА «ИНДУСТРИАЛЭКСПОРТИМПОРТ», РУМЫНИЯ

Таблица 9.12

	Днаме	етр, мм	Длина,			
Шифр	УБТ	корпуса	мм	Масса, кр	Резьба	
6 1/4×3 1/2 7×4 1/8 8×4 3/4 8 1/4×5 1/4 8 9/16×5 3/4 9×6 1/4 9 1/2×6 1/4 10 1/4×7 10 5/8×7 3/4 11×8 11 13/16×9 12 1/8×9 1/2 12 5/8×10 13 3/16×11	88,8 104,8 120,6 133,3 146,0 158,7 158,7 177,8 196,8 203,2 228,6 241,3 254,0 279,4	159 178 203 210 216 229 241 260 270 279 300 308 321 335	1200 1200 1200 1210 1220 1260 1280 1300 1300 1300 1300 1300	125 105 120 125 135 145 155 170 190 200 210 225 240 250	3-76 3-88 3-88 3-117 3-117 3-117 3-161 3-161 3-161 3-161 3-161 3-161 3-161	

Примечание. Конструкцию см. на рис. 9.8.

овершоты типа вм

ФИРМА «ИНДУСТРИАЛЭКСПОРТИМПОРТ», РУМЫНИЯ Таблица 9.13

	Диаметр,	Днаметр, мм			
Шифр	вахватываемый	корпуса	Длина, мм	Macca, KF	Резьба
BM-3 ⁵ / ₈ BM-4 BM-4 BM-4 BM-5 BM-5 BM-5 BM-6 BM-6 BM-6 ³ / ₄ BM-7 BM-7 1/ ₂ BM-8 BM-9 BM-9 BM-9 13/ ₁₆ BM-10 1/ ₄ BM-113/ ₄ BM-13	26—53 48—60 56—80 86—118 93—114 114—121 118—127 132—146 141—155 158—178 184—203 209—216 228—241 2541—280	92 102 114 127 140 152 171 190 205 228 249 260 298 330	620 635 680 710 720 880 860 860 890 970 970 970	17 19 27 38 35 44 69 71 80 100 104 120 154 192	HKT B-48 HKT B-60 3-76 3-101 3-101 3-121 3-121 3-121 3-147 3-147 3-177 3-177 3-201

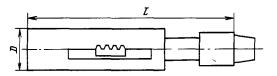
Примечание. Конструкцию см. на рис. 9.8.

9.3. ЯСЫ, УДАРНИКИ

ЯС ГИДРАВЛИЧЕСКИЙ

КАТАЛОГИ ФИРМ «СЕКЬЮРИТИ», «ДЖАКО СЕРВИС»

Таблица 9.14


	Диаметр, мм		Длина,	_	Усилие	Момент,
Шифр, тип	наруж- ный	внутрен- ний	мм	Резьба	удара, кН	кН∙м
HUJ HUJ HUJ	121 159 197	51 57 71	4800 4600 4900	3 ¹ / ₂ IF 4 ¹ / ₂ XH 6 ⁵ / ₈ Reg	130 260 440	67 135 217
11100 11300 11500 11700 11900 12100 12300 12500	121 159 165 171 178 197 203 229	51 57 57 63 63 63 63 76	5800 5800 5800 5800 5800 6100 6100 6100	3 ¹ / ₂ IF 4 ¹ / ₂ IF 4 ¹ / ₂ IF 4 ¹ / ₂ IF 4 ¹ / ₂ IF 6 ⁵ / ₈ Reg 6 ⁵ / ₈ Reg 7 ⁵ / ₈ Reg	1111111	1111111

Примечание. Ясы гидравлические выпускаются также фирмами «Боуэн», «Индустриалэкспортимпорт», «Коугэ Тул», «Гриффите Ойл Тул», «Хьюстон Инженеарс».

УДАРНИКИ ДЛЯ ЛИКВИДАЦИИ ПРИХВАТОВ

ФИРМА «ИНДУСТРИАЛЭКСПОРТИМПОРТ», РУМЫНИЯ

Рис. 9.10, Ударник механический

Таблица 9.15

	Диаме	Диаметр, мм				
Шифр	наруж- ный кор- пуса <i>D</i>	внутрен- ний НКТ	Длина L, мм	Macca, kr	Резьба	
		Для	работы в	нкт		
/16 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 / 4 /	30 45 55 60 76 90 114	41 49 59 74 88 100	1610 1615 1630 1650 1660 1735 1790	7 17 25 34 47 68 119	Штанга ⁵ / ₈ ° Штанга ¹ / ₈ ° Штанга 1 ⁴ Штанга 1 ¹ / ₈ ° Штанга 1 ¹ / ₈ ° 3-66 3-76	

Продолжение табл. 9.15

	Диаме	тр, мм			
Шнфр	наруж- ный кор- пуса D	внутрен- ний НКТ	Длина L. мм	Macca, KP	Резьба
		При бур	рении скв	ажины	
77/8 131/2 131/2 131/2 14/2 14/2 13/2 13/2 15/8 8	95 108 117 140 146 171 178 197 203	- - - - - -	2200 2330 2330 2340 2340 2645 2645 2645 2645	100 140 140 220 220 390 390 450 450	3-76 3-88 3-101 3-117 3-121 3-140 3-147 3-152 3-171

УСТРОЙСТВА ДЛЯ ЛИКВИДАЦИИ ПРИХВАТОВ

TY 39-203—76, TY 39-08-838—83, TY 39-1091—85, TY-39-902—83, TY 41-01-437—81

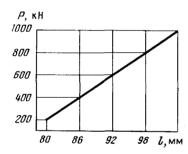


Рис. 9.11. Зависимость силы разъединения в ВУКе от свободного хода

Таблица 9.16

	Диаметр, мм		Дли-	Mac-	Нагруз- ка сраба-		Ресурс
Шифр	наруж- ный	внутрен- ний	на, мм	са, кг	тывания, кН	Резьба	ударов
УЛП-190-1 УЛП-ВМ-018 УЛП-ВМ-015 ВУК-170М ГУМ-162	178 178 146 172 162	56 32 55	1510 1820 1700 4280 2320	200 250 200 450 300	700 800 500 1000 300	3-147 3-147 3-121 3-147 3-133	100 300 300 500 500

Примечание. Зависимость необходимой силы разъединения $\,P\,$ в устройстве ВУК от свободного хода $\,l\,$ приведена на рис. 9.11.

Необходимый угол закручивания устройств УЛП (градус) определяется по формуле

$$\psi = 2KGL/(D^4 - d^4),$$

где K — коэффициент устройства для УЛП-015 K = 90; для УЛП-018 K = 100; G — необходимое усилие срабатывания, кH; L — расстояние от устья до УЛП, м; D, d — наружный и внутренний диаметры бурильных труб, см.

9.4. ФРЕЗЕРЫ

ФРЕЗЕРЫ ЗАБОЙНЫЕ

OCT 26-02-233-70

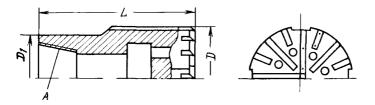


Рис. 9.12. Фрезер забойный

Таблица 9.17

Шифр		_	D 3444	Промывочный канал		Macca,	
Шифр	<i>D</i> , мм	L, mm	D ₁ , MM	диаметр, мм	число от- верстий	КР	Резьба <i>А</i>
Ф33-90 Ф33-102 Ф33-110 Ф33-115 Ф33-125 Ф33-125 Ф33-140 Ф33-145 Ф33-150 Ф33-160 Ф33-166 Ф33-172 Ф33-188	90 102 110 115 120 125 135 140 145 150 160 166 172 188	240 240 250 250 250 260 260 260 290 290 300 300 310	80 80 95 95 95 95 113 113 118 118 146 146 146	8,0 11,0 12,0 13,0 13,0 14,0 12,5 13,5 14,0 14,0 14,5 15,0 16,0	8 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8	9 10 11 13 14 15 18 19 20 26 28 29 32 38 40	3-66 3-66 3-76 3-76 3-76 3-88 3-88 3-88 3-88 3-121 3-121 3-121

Примечание Режим фрезерования $G \le 40$ кH, $n = 60 \div 90$ об/мин, Q > 12 л/о

ФРЕЗЕРЫ СКВАЖИННЫЕ ТИПА ФЗ И ФЗС

OCT 26-16-1619-81

Таблица 9.18

		_	Macca,		Режим	работы
Шифр	D, MM	L, mm	кр	Резьба	G, кН	п, об/мин
ФЗ (ФЗС)-85	85	210	8	3-66	30	120
ФЗ (ФЗС)-90	90	210	8	3-66	30	120
ФЗ (ФЗС)-104	104	215	11	3-76	40	120
ФЗ (ФЗС)-113	113	220	12	3-76	40	120
ФЗ (ФЗС)-118	118	220	14	3-76	50	120
ФЗ (ФЗС)-123	123	220	15	3-76	50	120
ФЗ (ФЗС)-135	135	230	17	3-88	60	120
ФЗ (ФЗС)-140	140	230	18	3-88	60	120
ФЗ (ФЗС)-145	145	230	19	3-88	60	120
ФЗ (ФЗС)-155	155	230	21	3-88	80	100
ФЗ (ФЗС)-165	165	250	28	3-121	80	100
ФЗ (ФЗС)-190	190	260	35	3-121	80	100
ФЗ (ФЗС)-210	210	290	43	3-147	90	100
ФЗ (ФЗС)-220	220	290	45	3-147	90	100
ФЗ (ФЗС)-243	243	300	59	3-147	90	100
ФЗ (ФЗС)-268	268	320	70	3-147	90	100
ФЗ (ФЗС)-295	295	320	80	3-147	90	100
ФЗ (ФЗС)-308	308	330	90	3-147	100	80
ФЗ (ФЗС)-320	320	330	95	3-171	100	80
ФЗ (ФЗС)-345	345	340	108	3-171	100	80
ФЗ (ФЗС)-375	375	360	130	3-171	100	80
ФЗ (ФЗС)-390	390	370	150	3-171	100	80
ФЗ (ФЗС)-475	475	410	225	3-171	100	80

Примечания 1. Конструкцию см. на рис. 9.12. 2. Тип ФЗ — без спиральных вставок в промывочных отверстиях, тип ФЗС — со спиральными вставками. 3. Гарантийный ресурс работы 30 ч по стали группы прочности Д.

ФРЕЗЕРЫ РЕЖУЩЕ-ИСТИРАЮЩИЕ КОЛЬЦЕВЫЕ

OCT 26-02-1296-75

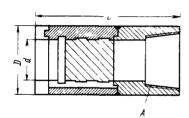


Рис. 9.13. Фрезер режуще-истирающий кольцевой

Таблица 9.19

*** 1	Днам	етр, мм	Длина	Macca,	Резьба А по	
Шнфр	наруж- ный <i>D</i>	внутрен- ний d		FOCT 631-75		
ΦK 90×61	90	61	300	8	СБТ 73	
ΦK 104×75 ΦK-118×89	104 118	75 89	300 320	10 12	CBT 89 CBT 102	
ΦK 136×102	136	102	350	18	CBT 114	
ΦK 140×110	140	110	350	16	CBT 127	
ΦK 190×152	190	152	370	30	CBT 168	

ФРЕЗЕРЫ ПИЛОТНЫЕ

OCT 26-16-1623-82

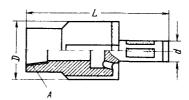


Рис. 9.14. Фрезер пилотный

Таблица 9.20

Шифр	<i>D</i> , мм	d, mm	L, мм	Масса, кг	Резьба <i>А</i>	G, ĸH
ФП-88	88	35	505	12	3-66	30
ФП-100	100	45	520	14	3-76	40
ФП-113	113	45	520	18	3-76	40
ФП-118	118	45	520	21	3-76	40
ФП-135	135	60	580	30	3-88	60
ФП-140	140	60	580	33	3-88	60
ФП-155	155	75	580	38	3-88	80
ФП-185	185	90	610	59	3-121	80
ФП-205	205	110	640	85	3-147	80
ФП-230	230	130	640	110	3-147	80

Примечания. 1. Фрезеры правые и левые. 2. Гарантированный ресурс работы при 100 об/мин — 3 м трубы группы прочности Д. 3. G — нагрузка при фрезеровании.

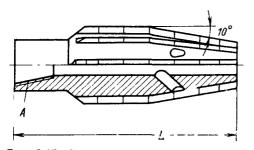


Рис. 9.15. Фрезер колонный конусный

Фрезеры колонные конусные для фрезерования смятых обсадных труб

TY 26-16-176-84

<u>Ш</u> ифр	1 ФКК-143-1
Диаметр, мм: наружный D	143
обсадной колонны	168
Длина L, мм	432
Масса, кг	30
Резьба <i>А</i>	3-88

Примечание. Гарантированный ресурс работы — 3 ч при нагрузке 40 кН и 100 об/мин.

ФРЕЗЕРЫ СКВАЖИННЫЕ ДЛЯ ПРОРЕЗАНИЯ «ОКНА»

OCT 26-16-01-83

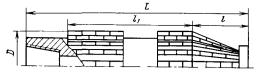
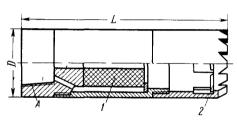



Рис. 9.16. Фрезер для прорезания «окна»

Таблица 9.21

			Длина, мм				
Шифр	D, мм	общая Д	конусной части !	цилинд- рической части l ₁	Macca, Kr	Резьба	
ФРЛ-116	116	850	102	135	60	3-76	
ФРЛ-121	121	860	100	135	64	3-76	
ФРЛ-143	143	1000	125	140	85	3-101	
ФРЛ-152	152	1050	150	140	102	3-101	
ФРЛ-167	167	1100	150	160	136	3-121	
ФРЛ-193	193	1150	170	175	173	3-121	
ФРЛ-218	218	1250	200	185	245	3-147	
ФРЛ-246	246	1300	200	235	295	3-147	

Примечание. Гарантированный ресурс \Longrightarrow два «окна» при нагрузке 30 кН и частоте 100 об/мин.

ФРЕЗЕРЫ-ЛОВИТЕЛИ МАГНИТНЫЕ

OCT 26-16-1606—78, TY 26-16-182—85, TY 39-915—84

Рис. 9.17. Фрезер магнитный: 1 — магнит: 2 — ловушка

Таблица 9.22

Шифр	D, mm	L, mm	Macca, Kr	Резьба <i>А</i>	Подъемная сила, Н
	57	200	4	3-42	350
ЛМ-73	73	165	4 5	3-50	700
ЛМ-90	90	190	6	3-50	850
УОЗ 1-11 5	115	440	28	3-76	3 800
УОЗ 1-195	195	630	80	3-121	10 000
ФМЗ-88	88	480	19	3-66	700
ФМЗ-103	103	520	25	3-76	800
ФМЗ-118	118	580	26	3-76	1 000
ФМЗ-135	135	580	45	3-88	1 200
ФМЗ-150	150	600	50	3 -88	2 400
ФМЗ-170	170	610	65	3-121	2 800
ФМЗ-19 5	195	620	120	3-147	3 200
ΦM3-22 5	225	700	140	3-147	5 600
ФМЗ-270	270	7 50	170	3-147	6 800
ΦM3-315	315	850	230	3-147	12 000

Примечания. 1. Фрезеры ФМЗ выпускаются без механического захвата для удержания попавшего внутрь металла под шифром ФМ. 2. Фрезерованию подлежит металл с пределом текучести не более 380 МПа.

9.5. ПРОЧИЙ ИНСТРУМЕНТ

ПЕЧАТЬ УНИВЕРСАЛЬНАЯ

ТУ 26-16-102-79

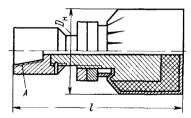
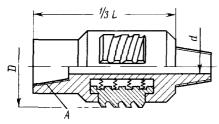



Рис. 9.18. Печать универсальная

Таблица 9.23

Шифр	D _н , мм (сменные)	<i>l</i> , mm	Диаметр обсадных труб, мм	Macca, Kr	Резь б а <i>А</i>
ПУ2-102	75, 84	295	102	5	3-66
ПУ2-146	106, 112, 118	360	146	10	3-66
ПУ2-168	125, 131, 137, 141	430	168	18	3-76

СКРЕБКИ КОЛОННЫЕ

ТУ 26-16-9—76, ТУ 39-1105—86

Рис, 9.19, Скребок колонный

Таблица 9.24

		Диаметр, м	1M		l		
Шифр	обсадной колонны	наруж- ный при работе <i>D</i>	внутрен- ний <i>d</i>	Длина L, мм	Mac- ca, kr	Резьба <i>А</i>	
CK-146	146	139	40	1280	110		
CK-168	168	158	40	1320	120		
CK-178	178	168	60	1190	135	-	
CK-219	219	207	62	1290	150	_	
CK-273	273	263	100	2060	255		
СГМ-140-1	140	129		1050	55	HKT 73	
CΓM-146-1	146	135		1390	80	3-88	
СГМ-168-1	168	157		1400	115	3-88	
СГМ-178-1	178	164		1400	120	3-88	

Примечания. 1. Прочерк означает, что данные не обусловлены ТУ. 2. Гарантированный ресурс работы СК — 200 ч, СГМ — 450 м.

КЛИН ОТКЛОНЯЮЩИЙ СТАЦИОНАРНЫЙ ДЛЯ ЗАРЕЗКИ ВТОРОГО СТВОЛА

ТУ 39-01-596-80, ТУ 26-02-206-75

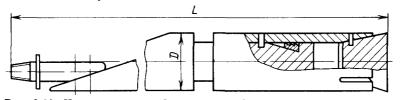


Рис. 9.20. Клин отклоняющий стационарный

Таблица 9.25

Шифр	Днаме	етр, мм	Длина <i>L</i> .	Угол на- клона	Macca.	
	клина <i>D</i>	обсадной колонны	мм	ложка, градус	кр	Резьба
ОП-146	110	146	5600	1,5	350	СБТ 89
OT3-115-1	115	146	3700	2,5	166	3-76
ОП-168	136	168	6000	1,5	490	CBT 89
OT3-134-11	134	168	4140	2,5	310	3-76
ОП-178	146	178	6000	1,5	530	CBT 89
ОП-219	186	219	6000	3,5	610	CBT 127
OT3-185	185	219	7000	3,0	890	3-88
ОП-245	212	245	6000	4,0	660	СБТ 127
ОП-273	240	273	5160	4,5	810	CBT 127
ОП-299	268	299	5400	5,5	870	CBT 127

НАДДОЛОТНЫЕ МЕТАЛЛОУЛОВИТЕЛИ

ФИРМА «ИНДУСТРИАЛЭКСПОРТИМПОРТ», РУМЫНИЯ

Рис. 9.21. Наддолотный металлоуловитель

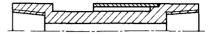


Таблица 9.26

	Диамет	р, мм	Длина.	Macca,	_		
наружный	внут- ренний	ствола	скважины	ММ	KP.	Резьба	
102 122 132 162 178 220 245	32 38 51 57 57 71 71	89 108 120 146 146 178 203	115—135 135—150 150—180 185—205 190—230 245—280 295—330	750 830 800 800 850 900	27 47 46 70 86 147	3-73 * 3-88 3-88 3-117 3-117 3-140 3-152	

Примечание. Ввездочкой обозначена резьба укороченного профиля.

Режим работы металлоуловителя

Улавливаемые частицы:			
наименование	Горная	Железо	Твердый
	порода		сплав
плотность, г/см [§]	< 2.50	7,85	14,10
размер, мм	<45	<20	<20
Необходимая скорость восходящего по-			
тока воды. м/с	2.7-3.5	3.7—5	5.57.0

ПРИСПОСОБЛЕНИЕ ДЛЯ НАРАЩИВАНИЯ ОБОРВАННОЙ ОБСАДНОЙ КОЛОННЫ (АНАЛОГ ОВЕРШОТА)

КАТАЛОГ ФИРМЫ «ЭЙ-ЗЕД (ГРАНТ) ДРИЛЕКС»

Таблица 9.27

	Диаме	тр, мм		Масса, кр	
Шифр	оборванной трубы	приспособления наружный	Длина, мм		
CPL 55 CP 66 CPL 7 CPL 76 CPC 76 CPC 9 CPC 9 CPL 10 CPL 13 CPC 13	139,7 168,3 177,8 193,7 193,7 244,5 244,5 273,1 339,7 339,7	173,0 201,6 212,7 228,6 241,3 298,5 298,5 317,5 384,2 431,8	1090 4140 1170 1250 4650 1440 4650 1435 1390 4990	76 172 105 98 315 215 475 205 220 670	

	Диам	етр, мм			
Шифр	оборванно й трубы	приспособления наружный	Длина, мм	Масса, кг	
CPL 16 CPC 16 CPL 20 CPC 20	406,4 406,4 508,0 508,0	463,5 482,6 584,2 590,6	1765 5040 1655 4910	405 1130 635 1360	

Примечания 1 Тип СР и СРІ — для скважин с наземным ПВО, СРС — для скважин с подводным ПВО 2 Опрессовка внутренним давлением 35 МПа 3. Аналогичные приспособления выпускаются фирмами «Боуэн» и «Эй И»

9.6. ОПРЕДЕЛЕНИЕ ГЛУБИНЫ ПРИХВАТА ПО УДЛИНЕНИЮ СВОБОДНОЙ ЧАСТИ ТРУБ

Глубину прихвата определяют по формуле

$$L=k \Delta l$$

где L — длина свободной части труб, м; k — коэффициент, постоянный для данного типоразмера труб (табл. 9.28); Δl — удлинение колонны труб под действием силы P, см.

Силы трения труб о стенки скважины не учитываются. Если в компоновку бурового снаряда включено несколько секций, состоящих из труб различного типоразмера, то при приложении силы P каждая секция удлиняется на Δl_i . Общее удлинение

$$\Delta l = \Delta l_1 + \Delta l_2 + \Delta l_3 + \ldots + \Delta l_n,$$

где Δl_1 — удлинение первой секции труб (в см), считая от устья, при приложении силы P,

$$\Delta l_1 = L_1/k_1, \quad \Delta l_2 = L_2/k_2, \ldots, \Delta l_n = L_n/k_n.$$

При фактически полученной величине Δl глубину прихвата определяют методом последовательного расчета $\Delta l_1, \ \Delta l_2, ..., \ \Delta l_n$ до получения равенства $\Delta l = \sum \Delta l_i$.

Длины секций L_1 , L_2 , ..., L_n известны из фактической компоновки, величины k_1 , k_2 , ..., k_n определяют по табл. 9.28.

Таблица 9.28

Диаметр труб, мм	Толщина	Сила натяжения Р, кН						
	стенки, мм	50	100	150	200	250	300	
	СБТ							
42	5	25,6	12,8	8,5	6,4	_] -	
50	5,5	33,9	16,9	11,3	8,5	6,8		
63,5	6	47,8	23,9	15,9	11,9	9,6	8,0	

Диаметр	Толщина			Сила натя	іжения Р, н	H	
труб, мм	стенки, мм	50	100	150	200	250	300
60,3	5 7,1	38,4 51,6	19,2 25,8	12,8 17,2	9,6 12,9	7,7	6,4 8,6
73,0	7	64,0	32,0	21,4	16,0	12,8	10,7
	9	80,0	40,0	26,7	20,0	16,0	13,3
	9,2	81,6	40,8	27,2	20,4	16,3	13,6
88,9	7	79,5	39,7	26,4	19,8	15,9	13,2
	9	98,8	49,4	32,9	24,7	19,8	16,5
	9,3	103,2	51,6	34,4	25,8	20,6	17,2
	11,4	120,8	60,4	40,2	30,2	24,2	20,1
101,6	6,6	87,0	43,5	29,0	21,8	17,4	14,5
	8,4	108,7	54,3	36,2	27,2	21,7	18,1
	9,6	122,4	61,2	40,8	30,6	24,5	20,4
114,3	8	118,2	59,1	39,4	29,6	23,6	19,7
	8,6	126,0	63,0	42,0	31,5	25,2	21,0
	9	131,8	65,9	44,0	33,3	26,4	22,0
	10	145,5	72,8	48,5	36,4	29,1	24,3
	10,9	156,5	78,2	52,1	39,1	31,3	26,1
127,0	9,2	150,0	75,0	50,0	37,5	30,0	25,0
	12,7	201,0	100,5	57,0	50,2	40,1	33,4
139,7	9 9,2 10 10,5 11	163,3 166,0 180,0 188,0 196,5 213,0	81,6 83,0 90,0 94,0 98,2 106,5	54,4 55,5 60,0 62,7 65,5 71,0	40,8 41,5 45,0 47,0 49,1 53,2	32,7 33,3 36,0 37,6 39,3 42,5	27,2 27,7 30,0 31,4 32,7 35,4
			AE	T			
54 73 90 103 108 114 129	9 9 9 9 10 9	18,7 26,6 33,7 39,1 41,2 48,0 49,6 61,5	9,4 13,3 16,8 19,6 20,6 24,0 24,8 30,8	6,2 8,9 11,2 13,0 13,7 16,0 16,5 20,5	4,7 6,7 8,4 9,8 10,3 12,0 12,4 15,4	5,3 6,7 7,8 8,2 9,6 9,9	5,6 6,5 6,8 8,0 8,3 10,3
147	9	57,6	28,8	19,2	14,4	11,5	9,6
	11	69,2	34,6	23,1	17,3	13,9	11,5
	13	80,5	40,3	26,8	20,1	16,1	13,4
	15	91,5	45,8	30,5	22,9	18,3	15,3
	17	102,1	51,1	34,0	25,5	20,4	17,0
170	11	80,8	40,4	26,9	20,2	16,2	13,5
	13	94,4	47,2	31,5	23,6	18,9	15,7

Диаметр	Толщина			Сила натя	жения <i>Р</i> , к	H		
труб, мм	стенки, мм	50	100	150	200	250	300	
нкт								
48,3	3,7 5,1 5,6	23,0 30,6 33,2	11,5 15,3 16,6	7,6 10,2 11,1	5,7 7,6 8,4		<u> </u>	
60,3	4,8 5,0 5,5 6,6 7,1 8,5	37,0 40,1 41,8 49,0 51,6 60,8	18,5 20,0 20,9 24,6 25,8 30,4	12,3 13,4 13,9 16,4 17,2 20,3	9,2 10,0 10,4 12,3 12,9 15,2	7,4 8,0 8,3 9,8 10,3 12,2	11111	
73,0	5,5 7 7,8 8,6 9,2 10,0 10,3 11,2	51,6 64,0 70,8 76,8 81,6 87,2 89,4 95,8	25,8 32,0 35,4 38,4 40,8 43,6 44,7 47,9	17,1 21,4 23,5 25,6 27,2 29,1 29,8 32,0	12,9 16,0 17,7 19,2 20,4 21,8 22,4 23,9	10,3 12,8 14,1 15,4 16,3 17,5 17,8 19,1	8,6 10,7 11,5 12,8 13,6 14,5 14,9 16,0	
88,9	6,5 7,4 9,5 10,5 11,4 12,1 12,4 13,0 13,5	74,2 83,5 104,4 113,5 120,8 128,5 131,0 136,5 141,0	37,1 41,7 52,2 56,8 60,4 64,2 65,6 68,2 70,5	24,7 27,9 34,8 37,9 40,2 42,8 43,7 45,5 46,8	18,5 20,9 26,1 28,4 30,2 32,1 32,8 34,1 35,2	14,8 16,7 20,9 22,8 24,2 25,7 26,3 27,3 28,2	12,4 13,9 17,1 18,9 20,1 21,4 21,9 22,8 23,4	
101,6	6,7 7,3 8,1 8,4 9,7 10,9 12,7 15,5	87,0 95,2 104,8 108,7 123,5 137,0 156,0 184,5	43,5 47,6 52,4 54,3 61,7 68,5 78,0 92,2	29,0 29,8 35,0 36,2 41,1 45,5 52,0 61,5	21,8 23,8 26,2 27,2 30,8 34,2 39,0 46,1	17,4 19,0 21,0 21,7 24,7 27,4 31,2 36,9	14,5 15,9 17,5 18,1 20,6 22,8 26,0 30,7	
114,3	6,4 7,0 7,4 8,6 9,5 10,2 10,9 12,7 14,2 16,0	95,5 103,8 109,2 126,0 137,5 146,8 156,5 178,0 196,8 218,0	47,7 51,9 54,6 63,0 68,7 73,4 78,2 89,0 98,4 109,0	31,8 34,6 36,4 42,0 45,7 48,8 52,1 59,4 65,5 72,5	23,8 25,9 27,3 31,5 34,3 36,6 39,1 44,5 49,2 54,4	19,1 20,7 21,8 25,2 27,5 29,3 31,3 35,6 39,3 43,5	15,9 17,3 18,2 21,0 22,8 24,4 26,1 29,7 32,8 36,2	

10. КОЛОННА НКТ

10.1. НАСОСНО-КОМПРЕССОРНЫЕ ТРУБЫ НОМЕНКЛАТУРА ВЫПУСКАЕМЫХ ОТЕЧЕСТВЕННЫХ НКТ

Таблица 10.1

Диаметр труб, мм	Толщина стенки, мм	Группа прочности	Завод-изготовитель
60,3	5,0	д, к	Первоуральский новотрубный завод Азербайджанский трубопрокатный завод
73,0	5,5; 7,0 5,5 6,5	д, к	Первоуральский новотрубный завод Руставский металлургический завод
88,9	6,5	д, к	Первоуральский новотрубный завод Азербайджанский трубопрокатный завод вод
114,3	7,0	д, к	Первоуральский новотрубный завод Азербайджанский трубопрокатный за- вод

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ОТЕЧЕСТВЕННЫХ НКТ

FOCT 633-80

Таблица 10.2

Наружный диаметр, мм	Толщина стенки, мм	Минимальный диаметр, мм	Днаметр муфты, мм	Масса 1 м с уче- том муфты, кг
	Гладкие (резьба	закругленного п	рофиля или Н	KM)
60,3	5,0	47,9	73,0	6,9
73,0 73,0	5,5 7,0	59,6 56,6	88,9 88,9	9,5 11,7
8 8 ,9	6,5	72,7	108,0	13,6
114,3	7,0	97,1	132,1	19,0
	С выса:	женными наружу	концами	
60,3	5,0	47,9	77,8	7,0
73,0 73,0	5,5 7,0	59,6 56,6	93,2 93,2	9,5 11,7
88,9	6,5	72,7	114,3	13,6
88,9	8,0	69,7	114,3	16,4
114,3	7,0	97,1	141,3	19,1

СОЕДИНЕНИЯ ЗАРУБЕЖНЫХ НКТ СТАНДАРТЫ АНИ, КАТАЛОГИ ФИРМ

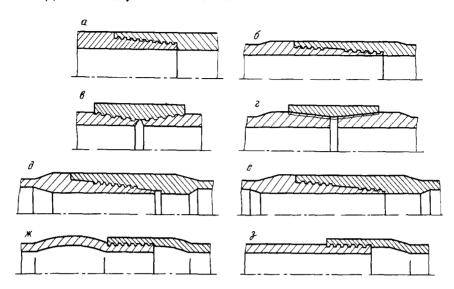


Рис. 10.1. Соединения НКТ:

а — FL-3S, FL-4S; б — CFJ-P, «Сапэ FJ»; в — резьба закругленного профиля, ВАМ, «Батгресс», TDS, TC 4S, «Сеал Лок» «НУ-Лок», NK-2SC NK-3SB; г — резьба закругленного профиля, ∂ — «Экстрем-Лайн», IJ-3S, IJ-4S, IJ-3SS, DS-HT, DSS-HT; ε — CS, A-95, PH-4, PH-6, ж — «Омега»; г — GST

Таблина 10.3

1аолица 10.3	
Тип соединения	Фирма-изготовитель
Безмуфтовые гл	падкие
CFJ-P, «Сапэ FJ» FL-3S, FL-4S	«Хайдрил» «Атлас Бредфорд»
Безмуфтовые с высад	кой наружу
«Экстрем-Лайн» А-95, CS, PH-4, PH-6 ДS-HT, ДSS-HT, IJ-3S, IJ-3SS, IJ-4S NK-EL	Большинство фирм «Хайдрил» «Атлас Бредфорд» «Ниппон Кокан»
Безмуфтовые рас	трубные
«Омега» GST	«Маннесман» «Стремлайн»
Муфтовые гла	дкие
Круглая резьба, «Батресс» VAM «НУ-Лок», «Сеал-Лок» NK-2SC, NK-3 SB	Все фирмы «Валлоурек» «Армко» «Ниппон Кокан Корпорейшн»

Тип	соединения	Фирма-изготовитель
ТДS TC-4S		«Маннесман» «Атлас Бредфорд»
	Муфтовые с высаженными	наружу концами
Круглая резьба		Все фирмы

ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЗАРУБЕЖНЫХ НКТ Таблица 10.4

Диаметр трубы, мм	Толщина стенки, мм	Мини- мальный внут- ренний диаметр, мм	Макси- мальный диаметр соедине- ния, мм	Масса 1 м с уче- том сое- динения, кг	Тип соединения (резьба)
		Tpy	бы гладки	е безмуфто	вие
60,3	4,83	48,92	64,1	6,6	FL-3S, FL-4S, CFJ-P, «Ca- na FJ»
	5,54 7,12	46,84 43,71	64,1 60,3	7,5 9,3	«Сапэ FJ» FL-3S, FL-4S
73,0	7,01 7,82 9,19	56,61 55,00 52,26	73,0 73,0 73,0	9,7 12,6 14, 4	FL-3S, FL-4S To жe
88,9	9,35 11,40	67,03 62,92	91,3 91,3	18,3 21,8	FL-3S, FL-4S, «Cana FJ» To же
101,6	7,26 8,38	83,90 81,67	104,0 104,0	16,9 19,2	FL-3S, FL-4S, «Cans FJ» To жe
114,3	6,35 7,37 8,56 9,47 10,92 12,70	98,43 96,39 94,01 92,18 89,28 85,73	114,3 116,7 114,3 114,3 114,3 114,3	16,9 19,0 22,3 24,5 27,8 31,8	FL-3S, FL-4S FL-3S, FL-4S, «Сапэ FJ» FL-3S, FL-4S То же
		Tp	убы гладк:	ие муфтовы	ae
60,3	4,24	49,40	73,0	6,0	Круглая резьба, NK-2SC, NK-3SB
	4,83	48,92	73,0	6,8	Круглая резьба, VAM, «Батресс», НУ-Лок», «Сеал-лок», TDS, TC-4S, NK-2SC,
	5,54	46,84	73,0	7,6	NK-3SB VAM, TC-4S
	6,45	45,0	73,0	8,6	Круглая резьба, VAM, NK-2SC, NK-3SB
	6,63	44,68	73,0	9,2	TC-4S
	7,12 8,53	43,71 40,86	72,5 76,2	9,4	VAM VAM, TC-4S

Днаметр трубы, мм	Толщина стенки, мм	Мини- мальный внутрен- ний диа- метр, мм	Макси- мальный диаметр соедине- вия, мм	Масса 1 м с уче- том сое- динения, кг	Тип соединения (резьба)
73,0	5,51	59,61	88,9	9,5	Круглая резьба, VAM,
	7,01	56,61	88,9	11,5	NK-2SC, NK-3SB VAM, TC-4S, NK-2SC,
	7,82	55,0	88,9	12,8	NK-3SB Круглая резьба, VAM, TC-4S, «Сеал-лок», TDS, NK 2SC NK 2SB
:	8,64 9,19 10,28 11,18	53,37 52,26 50,08 48,29	88,9 87,1 92,1 92,1	14,1 14,4 15,9 17,3	NK-2SC, NK-3SB TC-4S VAM VAM, TC-4S TC-4S
88,9	5,49	74,75	108,0	11,5	Круглая резьба, VAM, NK-2SC, NK-3SB
	6,45	72,83	108,0	13,7	То же
	7,34	71,05	99,5	15,2	VAM, NK-2SC, NK-3SB
	9,52	66,68	108,0	18,9	Круглая резьба, VAM, NK-2SC, NK-3SB
	10,50	64,72	105,1	20,4	VAM
	11,43	62,88	105,1	21,9	VAM
	12,09	61,54	111,1	23,5	TC-4S
	12,40 12,95	60,92 59,82	108,0 111,1	23,5 24,8	VAM TC-4S
101,6	5,74	86,95	120,6		Круглая резьба, VAM,
101,0	5,74	00,50	120,0	14,1	NK-2SC, NK-3SB
	6,65	85,12	110,9	16,2	VAM
	8,38	81,67	117,5	19,4	VAM, TC-4S
	9,65 10,92	79,13 76,59	117,2 117,2	22,0 24,6	VAM VAM
	15,49	67,44	127,0	33,9	TC-4S
114,3	6,88 7,37 8,56 9,47 10,92 12,70	97,36 96,39 94,01 92,18 89,28 85,73	132,1 132,1 132,1 133,4 133,4 136,5	18,8 20,1 23,1 25,1 28,0 32,1	Круглая резьба, VAM TC-4S, TDS То же TC-4S VAM, TC-4S TC-4S
	Трубы	і с высаже	енными на	ружу конц	ами, муфтовые
60,3	4,83 6,45	48,92 45,00	77,8 77,8	7,0 8,9	Круглая резьба То же
73,0	5,51 7,82	59,61 55,00	93,2 93,2	9,7 13,0	,
00 0	,	·			Variation non-fa
88,9	6,45 9,52	72,83 66,68	114,3 114,3	13,8 19,3	Круглая резьба То же
101,6	6,65	85,12	127,0	16,4	•
114,3	6,68	97,36	141,3	19,0	3

Диаметр трубы, мм	Толщина стенки, мм	Мини- мальный внутрен- ний диа- метр, мм	Макси- мальный диаметр соедине- ния, мм	Масса 1 м с уче- том сое- динения, кг	Ти п соединения (рез ьба)
	Tp	убы с выс	аженными	концами,	безмуфтовые
60,3	4,83	48,92	76,2	7,0	CS, A-95, DS-HT, DSS-HT, IJ-3S, IJ-4S, IJ-3SS, NK-EL, «Экстрем-Лайн», «Омега»
	5,54	46,84	69,9	7,9	CS, DSS-HT, IJ-3SS, IJ-4S, NK-EL
	6,63 8,53	44,68 40,86	73,9 79,6	9,2 11,4	DSS-HT, IJ-3SS, IJ-4S PH-6, DSS-HT, IJ-4S, IJ-3SS
73,0	5,51	59,61	88,9	9,7	NK-EL
	7,01	56,61	92,1	11,8	PH-6, NK-EL, DSS-HT, IJ-4S IJ-3SS
	7,82	55,0	92,1	13,0	PH-6, «Экстрем-Лайн», NK-EL, DSS-HT, IJ-3SS,
	8,64	53,37	92,3	14,1	IJ-4S, «Omera» PH-6, DSS-HT, IJ-4S
	9,96 10,28	50,72 50,08	93,7 95,5	15,9 16,4	PH-6 PH-4, PH-6, DSS-HT,
	11,18	48,29	95,5	17,3	IJ-4S, IJ-3SS PH-4, NK-EL, DSS-HT, IJ-4S,
88,9	6,45	72,83	108,0	13,8	NK-EL PH-6
	9,35 9,53	67,03 66,68	109,5 108,0	19,1	NK-EL
	12,09 12,95 13,46	61,54 59,82 58,80	114,3 115,9 115,9	23,5 24,8 25,4	PH-6, DSS-HT, IJ-4S PH-4, PH-6, DSS-HT, IJ-4S PH-4, NK-EL, «Экстрем- Лайн»
101,6	8,38	81,67	117,5	19,9	PH-4, DSS-HT, IJ-4S, IJ-3SS
	12,70 15,49	73,03 67,44	127,0 131,8	28,3 33,5	PH-4 PH-4, DSS-HT, IJ-4S
114,3	7,37 8,56	96,39 94,01	126,0 132,1	20,1 23,1	CS, DSS-HT, IJ-4S PH-6, DSS-HT, IJ-4S, IJ-3SS
	9,47 10,92	92,18 89,28	132,1 134,9	25,1 28,6	DSS-HT; IJ-4S PH-6, DSS-HT, IJ-4S,
	12,70 14,22 16,00	85,73 82,67 79,12	139,7 141,3 144,5	32,1 36,6 39,4	IJ-3SS PH-4, DSS-HT, IJ-4S PH-4 PH-4

Примечание. Данные по НКТ диаметрами 26,7 \leftarrow 52,4 мм не приведены из-за отсутствия из поставки в СССР.

🖁 ПРОЧНОСТНАЯ ХАРАКТЕРИСТИКА НКТ

ГОСТ 633—80, РД 39-1-108—78

Таблица 10.5

			Д	(опустима	я растяг	ивающа	я нагру	изка, кЪ	ł								
Диаметр	Толщина	-	Резьба :	закругле	ного про	офиля		Упорная резьба				истимое нее давл МПа		Сминающее давл е- ние, МПа			
трубы, мм	стенки, мм	Гл	адкие тр	убы	Трубы с высадкой наружу			(HKM)									
		д	қ	E	Д	K	Е	д	ĸ	E	Д	к	Е	д	K	E	
60,3	5,0	200	270	290	320	420	470	260	3 50	380	61,7	81,2	89,4	47,5	61,2	66,6	
73,0	5,5	290	380	420	43 0	570	630	360	480	520	56,1	73,8	81,2	41,6	53,4	68,1	
73,0	7,0	390	520	570	540	710	780	470	620	6 80	71,4	94,0	103,4	57,3	74,5	81,3	
88,9	6,5	435	570	630	620	820	900	540	710	780	54,5	71,6	78,8	40,2	51,4	55,4	
88,9	8,0			_	750	990	1090	670	880	970	67,0	88,2	97,0	52,9	68,6	75,0	
114,3	7,0	550	730	800	880	1150	1270	760	1000	1110	45,6	60,0	66,0	30,9	38,7	41,2	

ПРОЧНОСТНАЯ ХАРАКТЕРИСТИКА ЗАРУБЕЖНЫХ НЕКОРРОЗИОННОСТОЙКИХ НКТ

Таблица 10.6

		Допустим	иая раст нагрузка,	ягиваюц кН	цая		тимое эеннее	Сминающее давление, МПа		
Диаметр трубы, мм	Толщина стенки, мм	гладкие с кругло бой	й резь-	ные со	сталь- оедине- ия	давл				
		N80	P 105	N 80	P 105	N 80	P 105	N 80	P 105	
60,3	4,2 4,8 5,5 6,6 7,1 8,5	270 320 — 460 —	420 600 —	460 530 610 620 650 760		68,7 77,2 88,6 103,2 106,0 113,8 136,6	101,4 116,3 135,5 139,2 149,4 179,2	67,8 81,2 92,0 105,4 107,8 114,7 134,0	107,0 121,0 138,0 141,5 150,6 175,9	
73,0	5,5 7,0 7,8 8,6 9,2 10,3 11,2	470 630 710 — — —	610 820 930 — — —	640 800 880 960 1020 1120 1190	840 1050 1160 1270 1330 1460 1570	72,9 92,7 103,4 114,1 121,5 136,0 147,7	95,6 121,6 135,8 149,7 159,5 178,5 193,7	77,0 95,7 105,5 114,9 121,4 133,5 142,9	96,6 125,7 138,5 150,9 159,4 175,2 187,6	
88,9	5,5 6,5 7,3 9,5 10,5 11,4 12,1 12,4 13,0	580 710 820 1100 — — — —	930 1430 	790 920 1040 1310 1430 1530 1610 1640 1700	1040 1200 1360 1710 1880 2010 2110 2160 2230	59,6 70,1 79,7 103,4 114,7 124,0 131,2 134,6 140,5	78,2 91,9 104,6 135,8 150,6 162,8 172,2 176,6 184,4	54,2 72,6 83,6 105,5 115,5 123,4 129,5 132,4 137,3	65,1 90,0 109,7 138,5 157,6 161,9 170,0 173,8 180,1	
101,6	5,7 6,7 8,4 9,7 10,9 12,7 15,5	640 		950 1090 1350 1540 1710 1950 2310	1250 1440 1770 2020 2250 2560 3030	54,5 63,2 79,6 91,7 103,8 120,5 147,1	71,6 83,0 104,5 120,4 136,2 158,3 193,1	45,4 60,6 83,5 94,8 105,8 120,5 142,5	53,2 73,8 109,6 124,5 138,9 158,3 187,0	
114,3	6,9 7,3 8,6 9,5 10,9 12,7 14,2 16,0	930 		1280 1360 1570 1720 1950 2230 2470 2720	1680 1790 2060 2260 2560 2930 3230 3570	58,1 62,1 72,2 80,0 92,2 107,2 120,0 135,0	76,3 81,5 94,8 104,9 121,0 140,7 157,6 177,3	51,7 58,8 76,4 83,8 95,2 108,9 120,0 132,7	61,7 71,3 95,2 110,0 125,0 142,9 157,7 174,1	

Примечание. Толщина стенки приведена с округлением до 0,1 мм.

В ПРОЧНОСТНАЯ ХАРАКТЕРИСТИКА КОРРОЗИОННОСТОЙКИХ ЗАРУБЕЖНЫХ НКТ СТАНДАРТ АНИ, КАТАЛОГИ ФИРМ «СУМИТОМО МЕТАЛ», «НИППОН КОКАН КОРПОРЕЙШН», «ВАЛЛОУРЕК» Таблица 10.7

	1	Дог	тустимое в	гутреннее д	авление, М	Па		Суинаю	щее давлен	ие, МПа	
Диаметр трубы, мм	орбы, мм стенки, мм с-75-11 80S AC-85 90S, AC-90 60,3 4,2 65 68 — 76 4,8 72 77 84 88 5,5 83 89 — 100 6,5 97 103 112 115 7,1 107 114 — 128 8,5 128 — — — 73,0 5,5 68 73 79 82 7,0 87 93 — 104 7,8 97 103 112 116 9,2 114 121 — 137 10,3 127 — 153 88,9 5,5 66 70 76 79 7,3 75 80 — 90 9,5 97 103 112 116	90S.	C-95, 95S, AC-95	C-75-11	808	AC-85	C-90, 90S, AC-90	C 95, 95S, AC 95			
60,3	4,8 5,5 6,5 7,1	72 83 97 107	77 89 103		88 100 115 128	80 92 105 123 135 162	67 75 86 99 108 126	69 81 92 105 115	88 114 	75 91 104 123 129	78 95 109 125 136 159
73,0	7,0 7,8 9,2	87 97 114	9 3 103	_	104 116 137	86 110 123 144 161	72 90 99 114 125	77 96 105 121	83 114 	85 108 118 137 150	89 114 125 144 159
88,9	6,5	66 75	80	l —	79 90	71 83 95 123 136 147 160	52 69 78 99 108 116 124	73 83 105 115 124	78 114 —	59 80 94 119 130 139	61 83 99 125 137 146 157
101,6	5,7 6,7 8,4 9,7 10,9	51 59 75 86 97	54 63 — — —	68 — —	61 71 90 103 117	65 75 95 109 123	44 58 78 89 99	45 61 — —	64 	49 66 94 107 119	50 69 99 112 126
114,3	6,9 10,9	54 86	58 92	63 —	65 104	69	50 89	52 95	55 —	56 107	58 —

ДОПУСТИМЫЕ РАСТЯГИВАЮЩИЕ НАГРУЗКИ ДЛЯ КОРРОЗИОННОСТОЙКИХ НКТ (В кН)

 $^{\infty}$ СТАНДАРТ АНИ, КАТАЛОГИ ФИРМ «СУМИТОМО МЕТАЛ», «НИППОН КОКАН КОРПОРЕЙШН», «ВАЛЛУОРЕК» Таблица 10.8

ae 862	Диаметр трубы, мм 60,3 60,3 73,0 88,9	Толщина		Глади	ие трубы с	крупной резьб	o 2	Трубы с	Трубы с высаженными коппами с крупной резьбой. Все трубы с упорной резьбой							
		стенки, мм	C-75-II	80S	AC-85	C-90, 90S, AC-90	C-95, 95S, AC-95	C-75-II	80S	AC-85	C-90, 90S, AC-90	C-95, 95S, AC-95				
	60,3	4,2 4,8 5,5 6,5 7,1 8,5	250 300 — 430 —	270 320 — 460 —	340 480 	300 360 — 510 —	320 380 — 540 —	430 490 570 610 710	460 520 600 650	490 640 	520 590 670 740 860	550 630 710 780 910				
	73,0	5,5 7,0 7,8 9,2 10,3	440 590 660 —	470 — 710 —	500 750 	530 700 790 —	550 — 840 — —	600 750 830 950 1040	640 800 880 1010	680 940 —	720 900 990 1140 1250	760 950 1050 1200 1300				
	88,9	5,5 6,5 7,3 9,5 10,5 11,4 12,4	540 660 770 1030 — — —	580 700 820 1090 —	750 1160 	650 790 920 1230 — —	680 840 970 1300 	740 860 970 1220 1330 1430 1540	920 1030 1310 1420 1530	980 — 1390 — —	890 1030 1160 1470 1600 1720 1840	940 1090 1230 1550 1700 1820 1950				
	101,6	5,7 6,7 8,4 9,7 10,9	600 — — — —	640	 	720 	760 — — — —	890 1020 1270 1430 1600	1090 — — —	1160 — — —	10 7 0 1230 1520 1730 1920	1140 1300 1600 1820 2020				
225	114,3	6,9 10,9	870 	930	990 —	1040	1100	1200 1830	1280 1950	1360 —	1440 2200	1520				

10.2. РАСЧЕТ КОЛОННЫ НКТ

Колонны НКТ спускают в скважины для проведения испытания на продуктивность пласта или для эксплуатации. Методики расчета свободно подвешенных колонн НКТ и при наличии пакера несколько различны. В настоящей методике принято условие спуска НКТ в кровлю продуктивного горизонта (пласта), а также то, что распределение наружного и внутреннего давлений между граничными точками — линейное. При определении внутренних и наружных давлений в наклонных скважинах ($\alpha > 5^{\circ}$) все отметки глубин граничных точек необходимо пересчитывать на вертикальную проекцию траектории ствола. При интенсивности искривления ствола менее $0.5^{\circ}/10$ м коэффициент запаса прочности на растяжение можно применять как для вертикальных скважин. Коэффициенты запаса прочности для зарубежных труб принимаются аналогично отечественным.

І. СВОБОДНО ПОДВЕШЕННАЯ КОЛОННА

В процессе испытания скважины на продуктивность, освоения или эксплуатации через свободно подвешенную колонну НКТ наружные и внутренние давления в любой момент производственного цикла отличаются на величину не больше допустимой депрессии на пласт (во всех районах СССР она не превышает 20 МПа), т. е. для труб из стали группы прочности Д коэффициент запаса прочности более 2. Поэтому колонну рассчитывают только на растяжение (при проведении работ по гидроперфорации учитывают дополнительные усилия от внутреннего давления):

$$Q_{\mathtt{R}} = \sum (q_i l_i \cos \alpha) + 11 (p_{\mathtt{B}})_{\mathtt{y}} F \leqslant \frac{0.1 [Q]}{n_{\mathtt{CTD}}},$$

где $Q_{\rm R}$ — масса спускаемой колонны до проверяемого сечения, кг; q_i — масса 1 м труб в спускаемой i-й секции, кг/м; l_i — длина i-й спускаемой секции, м; α — угол наклона скважины в интервале спуска i-й секции, градус; $(p_{\rm B})_{\rm y}$ — давление на устье при проведении каких-либо работ, МПа; F — площадь проходного канала трубы на устье, см²; [Q] — допустимая нагрузка на растяжение для труб в проверяемом сечении (берется по приведенным выше таблицам), кH; $n_{\rm crp}$ — коэффициент запаса прочности труб на растяжение (принимается согласно рис. 10.2 в зависимости от градиента изменения угла траектории ствола скважины).

Давление на устье, МПа,

$$(
ho_{\mathrm{B}})_{\mathrm{y}} = \sum \left[(\Delta
ho_i + \Delta
ho_{\mathrm{3}i}) \,
ho_{\mathrm{B}} l_i
ight] + \Delta
ho_{\mathrm{H}}
ho_{\mathrm{B}},$$

где Δp_i , Δp_{3i} — потери давления в трубном и затрубном пространстве i-й секции на длине 1 м (определяется по таблицам), МПа/м; $\Delta p_{\rm H}$ — потери давления в насадках (определяются по таблицам), МПа; $\rho_{\rm B}$ — плотность промывочной жидкости, г/см³.

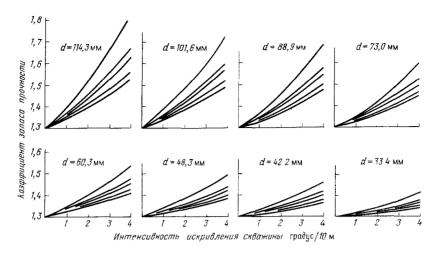


Рис. 10.2. Зависимость коэффициента запаса прочности НКТ от интенсивности искривления ствола

Кривые соответствуют группам прочности стали (сверму вниз): Д, К, Е, Л, М

Так как

$$\Delta p_{\scriptscriptstyle \rm H} \rho_{\scriptscriptstyle \rm B} \gg \sum \left[\left(\Delta p_i + \Delta p_{\scriptscriptstyle 3} i \right) \rho_{\scriptscriptstyle \rm B} l_i \right],$$

при расчетах можно принимать $(p_{\rm B})_{\rm y} \simeq \Delta p_{\rm H} \rho_{\rm B}$. Колонну рассчитывают методом снизу вверх.

ІІ. ҚОЛОННА НҚТ, ОБОРУДОВАННАЯ ПАКЕРОМ

Трубы рассчитывают на смятие при эксплуатации только газовых скважин в момент закрытия клапана-отсекателя, т. е. когда $p_{\rm B}=0$:

$$(p_{\rm H})_{\rm M36} = p_{\rm HZ} = 10^{-2} \rho_{\rm H} z \ll \frac{[p_{\rm CM}]_z}{m}$$
,

где $\rho_{\rm H}$ — средняя плотность жидкости, находящейся над пакером в межтрубном пространстве, г/см³; $[p_{\rm cm}\,]_z$ — допустимое давление смятия труб, расположенных на глубине z (определяют по приведенным выше таблицам), МПа; m — коэффициент запаса прочности на смятие, m=1,15.

На внутреннее давление трубы рассчитывают при распакеровке, закачке флюида в пласт или закрытии задвижки фонтанной арматуры эксплуатируемой газовой скважины. Трубы должны удовлетворять условию соответственно

$$\begin{split} (p_{\rm B})_{\rm M36.~z} &= 10^{-2}\,(\rho_{\rm B} - \rho_{\rm H})z + \Delta p_{\rm MBK} \leqslant [p_{\rm B}]_{\rm z}/n, \\ (p_{\rm B})_{\rm M36.~z} &= 10^{-2}\,(\rho_{\rm B} - \rho_{\rm H})_z + \Delta p_{\rm 3AK} \leqslant [p_{\rm B}]_{\rm z}/n, \\ (p_{\rm B})_{\rm y} &= p_{\rm HJ}\,\frac{2-S}{2+S} \leqslant [p_{\rm B}]/n, \quad S = 10^{-4}\rho_{\rm r}L, \end{split}$$

где $(p_{\rm B})_{{\rm H}^3{\rm G}~z}$ — внутреннее избыточное давление в трубах на глубине z; $[p_{\rm B}]_z$ — допустимое внутреннее давление для труб, расположенных на глубине z (находят по приведенным выше таблицам); $\Delta p_{{\rm пак}}$ — давление, необходимое для распакеровки пакера (определяют по технической характеристике пакера); n — коэффициент запаса прочности на внутреннее давление, n=1,32; $\Delta p_{{\rm sak}}$ — давление закачки флюида в пласт (определяется геологической службой эксплуатации); $p_{{\rm пл}}$ — пластовое давление на глубине z; $\rho_{{\rm F}}$ — относительная плотность газа по воздуху, $\rho_{{\rm r}}=0.6\div1$.

При добыче нефти НКТ не рассчитывают на смятие и внутреннее давление, ввиду их незначительных величин.

На основании полученных данных, рассчитанных по приведенным выше формулам, строят эпюры избыточных наружных и внутренних давлений для условий z=0 и z=L и подбирают трубы, которые затем проверяют на растяжение. Верхняя труба каждой спускаемой i-й секции на глубине ее спуска должна удовлетворять условиям

$$Q_{i} = 10Q_{0} + 10^{2} \, \Delta p_{\text{mar}} F_{i} \leqslant [Q]/n_{\text{ctp}}, \ Q_{i} = 10Q_{0} + \Delta Q_{\text{mar}} \leqslant [Q]/n_{\text{ctp}}, \ Q_{i} = 10Q_{0} + 10^{2} \, \Delta p_{\text{sar}} F_{i} \leqslant [Q]/n_{\text{ctp}}, \ Q_{i} = 10Q_{0} - Q_{\text{pas}} - 240F_{i} \, \Delta t_{z} + 47 \, (p_{\text{B}})_{\text{y}} \, d_{i}^{2} - 0,235z \, (D_{i}^{2} p_{\text{B}} - d_{i}^{2} p_{\text{B}}) \leqslant [Q]/n_{\text{ctp}}, \ \end{pmatrix}$$

где Q_0 — масса хвостовика, пакерующего устройства и нижерасположенных НКТ; $Q_{\text{пан}}$ — усилие снятия пакера (берется по технической характеристике пакера), кН; $Q_{\text{раз}}$ — усилие разгрузки на гидромеханический или механический пакер (берется по технической характеристике пакера, для гидравлического пакера $Q_{\text{раз}}=0$); $D_i,\ d_i$ — наружный и внутренний диаметры труб i-й секции, см; Δt_z — средняя температура нагрева труб на глубине z в процессе испытания или эксплуатации (при охлаждении знак плюс),

$$\Delta t_z = \frac{L-z}{2L}(t_3-t_1+t_4-t_2);$$

 t_1 и t_3 — температура на устье скважины до и в процессе эксплуатации (испытания), °C; t_2 и t_4 — температура на глубине установки пакера до и во время эксплуатации (испытания), °C.

При несоблюдении условия прочности верхней трубы *i-*й секции колонны на растяжение, часть секции заменяют более прочными трубами. Длину заменяемой секции находят методом последовательного приближения.

Расчет на устойчивость свободно подвешенной колонны НКТ производится при дебитах скважины, превышающих указанные ниже величины.

Дебит скважины, при котором теряется устойчивость колонны НКТ

Диаметр НКТ, мм							48	60	73	102	114
Дебит: нефти, м ³ /ч							545	920	1400	2870	3700
газа, тыс. м ³ /ч							6	10	14	28	35

Минимально необходимая длина «ровного» участка для установки пакера (в м) приведена в табл. 10.9.

Погрешность определения глубины скважины определяется по формуле

$$\mathbf{\epsilon} = \left| \frac{L_{\mathbf{R}} - L_{\mathbf{Tp}}}{L_{\mathbf{R}}} \right|,$$

где $L_{\rm R}$, $L_{\rm Tp}$ — глубины скважины, определенные соответственно каротажем и контрольным замером бурильных труб, м.

Таблина 10.9

Глубина	П	огрешность оп	ределения глу	бины скважин	E 8
установки пакера, м	0,001	0,002	0,003	0,004	0,005
500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5000 6000	2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 6,5 7,0 7,5 8,0	3 4 5 6 7 8 9 10 11 12 13	3,5 5 6 8 10 11 13 14 16 17 19	4 6 8 10 12 14 16 18 20 22 24 26	5 7 10 12 14 17 20 22 25 27 30 33

Длина вписываемой компоновки испытательного оборудования (м) для осуществления нормального спуска его в скважину не должна превышать

$$l_{\rm H} \leq 2 \sqrt{2R \left(D_{\rm c} - \frac{D_{\rm p} - d_{\rm H}}{2}\right)}$$
,

где R — минимальный радиус искривления траектории ствола скважины в интервале спуска испытательного оборудования, м; $D_{\rm c},\ D_{\rm p},\ d_{\rm m}$ — диаметры соответственно скважины, резинового элемента в транспортном положении и корпуса узлов испытательного оборудования, м.

Значения нагрузок, необходимых при распакеровке, привелены в табл. 10.10.

Величины дополнительных растягивающих нагрузок (в кН) при работе ясом в момент снятия пакера представлены в табл. 10.11.

Таблица 10.10

Диаметр, мм		Нагрузка,	Днаме	Нагрузка,	
скважины	резинового элемента	HÀ.	скважины	резинового элемента	кH
76 93 97 97 111 118 121 132 146 151 161	67 87 78 87 98 108 108 115 135 135 145	17 18 29 22 38 26 33 47 35 51 51 68	187,3 190,5 200,0 212,7 215,9 222,3 242,9 244,5 250,8 269,9 295,3	170 170 180 195 195 195 220 220 220 220 240 270	74 87 89 84 100 129 119 128 161 200 170

Таблица 10.11

		Давление в в	атрубном прос	транстве, МПа	
Шифряса	10	20	30	40	50
ЯГ-65	15	30	45	60	75
ЯГ-95	40	75	115	150	190
ЯГ-146	95	190	290	385	480

10.3. ОСНАСТКА КОЛОНН НКТ

ПЕРЕВОДНИКИ ДЛЯ НКТ

ГОСТ 23979-80

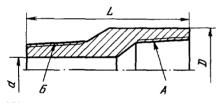


Рис. 10.3. Переводник для НКТ

				Macca,	Pes	ьба			
Обозначение	D, мм	d, mm	L, mm	Kr	A	Б			
	Трубы с резьбой вакругленного профиля								
П В114×114 П В114×102 П В114×89 П В114×89 П В114×89 П В114×89 П В114×89 П В114×89 П В114×89 П В114×89 П В114×89 П В114×89 П В114×89 П В114×89 П В102×89 П В89×80 П В89×80 П В89×80 П В89×89 П В89×89 П В89×89 П В89×89 П В89×860 П В89×860 П В89×860 П В89×860 П В73×89 П В73×80 П В73×848 П Т3×848 П Т3×	142,7 142,7 142,7 133,8 133,8 142,7 142,7 133,8 133,8 122,2 122,2 128,3 128,3 128,3 122,2 122,2 122,2 122,2 108,0 108,0 115,9 115,9 108,0 108,0 90,0 94,0 94,0 94,0 94,0 94,0 90,0 94,0 94	100,3 88,6 88,6 76,0 759,0 59,0 59,0 59,0 59,0 59,0 59,0 59,0	230 230 230 230 230 230 230 230 230 240 230 240 230 240 230 215 215 220 220 215 215 220 220 215 216 210 210 210 210 210 210 210 210 210 210	7,43,22,62,1,9,3,1,0,7,8,6,8,8,4,2,9,3,2,2,4,4,0,8,2,0,3,6,7,7,1,2,6,1,8,2,9,2,6,9,8,1,1,9,8,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	B114 B114 B114 B114 B114 B114 B114 B114	114 102 B102 102 B102 89 B89 89 89 B89 73 B73 102 89 B89 89 B89 89 73 B73 B73 B73 B73 B73 B73 B73 B60 114 B89 89 73 B73 B73 B73 B73 B73 B73 B73 B73 B73			

				Macea,	Pe	Резьба		
Обозначение	D, mm	d, mm	<i>∆</i> , мм	KF	A	Б		
П B60×48 П B60×B48 П 60×48 П 60×B48	79,0 79,0 74,0 74,0	40,3 40,3 40,3 40,3	180 180 170 180	2,5 2,6 2,1 2,7	B60 B60 60	48 B48 48 B48		
	Трубы	муфтовые	с ревьбоі	нкм				
Π Γ114×Γ102 Π Γ114×Γ89 Π Γ114×Γ73 Π Γ102×Γ89 Π Γ102×Γ73 Π Γ89×Γ73 Π Γ89×Γ60 Π Γ73×Γ60	132,5 132,5 132,5 121,0 121,0 107,0 107,0 89,0	88,6 75,9 59,0 75,9 59,0 59,0 50,3 50,3	250 250 250 225 225 225 205 205 205	6,6 6,7 7,0 5,2 5,5 4,1 3,9 2,8	F114 F114 F114 F102 F102 F89 F89 F73	F102 F89 F73 F89 F73 F73 F60 F60		

Примечания. 1. Переводники изготовляют из стали той же группы прочности, что и трубы. 2. Обозначение резьбы труб: В — с высаженными наружу концами, Γ — высо-когерметичные типа НКМ.

переводники коррозионностойкие для нкт

ТУ 39-954-85, ТУ 39-1067-85

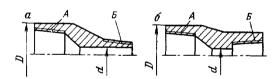


Рис. 10.4. Переводник для НКТ коррозионностойкий

Таблица 10.13

	Pes	эьба	D,	đ,	Mac- ca, kp	Допусти- мая рас- тягиваю-
Обовначение	A	Б	мм	мм		щая на- грузка, кН
	Переходные	(рис. 10.4, а))			
6 ПКН-НКМ 114×89	HKM 114	HKM 89	139	76	7	-
6 ПКН-НКМ 89×73	HKM 89	HKM 73	108	59	4	
6 ПКН-НКМ 73 ×60	HKM 73	HKM 60	89	50	2	
25 ΠΚΗ-ΗΚΜ 114×89	HKM 114	HKM 89	133	76	7	880
$25 \Pi \text{KH-У-HKM} 114 \times 89$	HKM 114	HKM 89	133	66	7	1600
25 ΠΚΗ-ΗΚΜ 102×89	HKM 102	HKM 89	121	76	6	880
25 ΠΚΗ-ソ-ΗΚΜ 102×89	HKM 102	HKM 89	121	66	6	1600
25 ΠΚΗ-ΗΚΜ 89×73	HKM 89	HKM 73	108	59	4	770

	Pe	эьба	D,	d,	Mac-	Допусти- мая рас- тягиваю-
Обозначение	A	Б	MM	MM GA,		щая на- грузка, кН
25 ПКН-У-НКМ 89×73 25 ПКН-НКМ 73×60	HKM 89 HKM 73	HKM 73 HKM 60	108 89	51 50	4 2	1200 410
Į	Цвухмуфтовы е	рис. 10.4,	5)			
6 ПКМ-НКМ 114×89 6 ПКМ-НКМ 89×73 6 ПКМ-НКМ 73×60 25 ПКМ-НКМ 114×89 25 ПКМ-НКМ 102×89 25 ПКМ-НКМ 89×73 25 ПКМ-НКМ 73×60	HKM 114 HKM 89 HKM 73 HKM 114 HKM 102 HKM 89 HKM 73	HKM 89 HKM 73 HKM 60 HKM 89 HKM 89 HKM 73 HKM 60	139 108 89 133 123 108 89	74 60 50 74 74 60 50	8538753	2800 2800 1890 1400

Примечания. 1. Цифры 6 и 25 — предельное содержание сероводорода и углекислоты во флюнде, % 2. Смазки для свиччивания труб; P-416, P-406 или P-113. 3. Гарантийный ресурс — четыре цикла свинчивания.

Расход смазки на одно соединение при свинчивании В	НҚТ	
Диаметр, мм		101,6 114,3 35 40
Шаблоны НКТ (размеры в мм)		
Наружный диаметр трубы	48,3—73,0	88,9—114,3
трубы		3,2 67

10.4. ПАКЕРЫ, ЯКОРЯ

ПАКЕРЫ ДЛЯ НЕФТЯНЫХ И ГАЗОВЫХ СКВАЖИН

OCT 26-16-1615-81

Перепад давления: вверх — ΠB , вниз — ΠH ; как вверх, так и вниз — $\Pi \Pi$.

Способ фиксации: самофиксирующиеся — Я, отдельным устройством — не маркируется.

Приведение в рабочее состояние: гидравлическое — Γ , механическое — M, гидромеханическое — ΓM , взрывом — B3.

Способ освобождения: натяжением — не маркируется, вращением — В, нагнетанием жидкости — Н, епециальным инструментом — И, разбуриванием — Р.

Исполнение: нормальное — не маркируется; коррозионностойкое: углекислоты до 6 % — К1, углекислоты и сероводорода до 6 % каждого — К2, углекислоты и сероводорода 6—25 % каждого — К3, соляной кислоты до 20 % — К4, углекислоты более 6 % — К5; термостойкое: до 150 °C — Т1, 150—200 °C — Т2.

Усилие натяжения для освобождения не должно превышать 125 кH.

ПАКЕРЫ САМОФИКСИРУЮЩИЕСЯ ДЛЯ РАЗОБЩЕНИЯ ПРОСТРАНСТВ В КОЛОННЕ

ТУ 26-16-10-76, ТУ 26-02-313-77

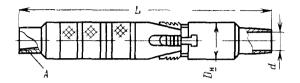


Рис. 10.5. Пакер для разобщения пространств в колонне

Таблица 10.14

Шифр	<i>D</i> _н ,	Δ <i>р</i> , МПа	d, MM	L,	Масса, кг	Резьба А
ПН-ЯМ-90-210 ПВ (ПН)-ЯГ-90-500 (К1, К)	90	21 50	40 38	2170 1510	45 43	48 48
ПН-ЯМ-112-210 ПД-ЯГН-112-35 ПД-ЯГ-112-500 ПД-ЯГ-112-70 (К1, К2)	112	21 35 50 70	62 50 50 50	2170 1630 2095 1870	52 60 80 81	73 73 73 73 73
ПД-ЯГН-114-35	114	35	50	1630	61	73
ПД-ЯГМ-118-210 ПН-ЯГМ-118-210 ПН-ЯМ-118-210 ПД-ЯГН-118-35 2ПД-ЯГ-118-350 (К1, К2) ПД-ЯГИ-118-350 ПД-ЯГ-118-500 1ПД-ЯГ-118-500 2ПД-ЯГ-118-500 2ПД-ЯГ-118-70	118	21 21 35 35 35 50 50 50 70	62 62 62 50 61 50 50 62 50	2000 1120 2170 1630 2680 2330 2095 1850 1835 1900	70 37 55 67 136 103 89 94 83 84	73 73 73 73 73 73 73 73 73 73 73
ПВ-ЯГМ-Т-122-140 ПН-ЯГМ-122-210 ПД-ЯГН-122-35 1ПД-ЯГ-122-500 2ПД-ЯГ-122-500 2ПД-ЯГ-122-70	122	14 21 35 50 50 70	45 62 50 62 50 50	1690 1120 1630 1850 1835 1900	70 39 70 98 84 85	73 73 73 73 73 73 73
ПД-ЯГН-126-35	126	35	50	1630	72	73
ПД-ЯГМ-136-210 ПН-ЯГМ-136-210 ПД-ЯГ-136-210 ПН-ЯМ-136-210 ПД-ЯГН-136-35 ПД-ЯГИ-136-350 2ПД-ЯГ-136-35 (К1, К2) 2ПД-ЯГ-136НҚМ-35 (К1, К2)	136	21 21 21 21 35 35 35 35	76 76 50 62 50 61 76 76	2215 1195 3886 2260 1775 2704 1985 1985	110 56 175 70 82 136 108 108	89 89 73 73 73 73 89 HKM 89

Шнфр	<i>D</i> _н ,	Δ <i>р</i> , МПа	d,	L,	Масса, кг	Резьба Л
ЗПД-ЯГ-136-35 (К1, К2, К2И)	i.	35	80	2800	175	114
ПД-ЯГ-136-500		50	61	2325	130	73
1ПД-ЯГ-136-500		50	76	1900	122	89
2ПД-ЯГ-136 (НКМ)-70К3		70	62	1955	120	(HKM) 89
ПВ-ЯГМ-Т-140-140	140	14	59	2370	100	73
ПН-ЯГМ-140-210		21	76	1195	57	89
ПД-ЯГН-140-35		35	62	1775	85	89
2ПД-ЯГ-140 (НКМ)-35 (К1, К2)		35	76	1985	112	(HKM) 89
3ПД-ЯГ-140-35 (К1, К2, К2И)		35	80	2800	164	114
1ПД-ЯГ-140-500		50	76	1900	128	89
2ПД-ЯК-140 (НКМ)-70К3		70	62	1955	124	(HKM) 89
ПН-ЯГМ-145-210	145	21	76	1195	59	89
ПД-ЯГН-145-35		35	62	1775	88	89
ПД-ЯГ-145-35		35	76	2750	140	89
2ПД-ЯГ-145-35 (К1, К2)		35	76	1985	117	89
2ПД-ЯГ-145-35 (К1, К2)		35	76	1985	117	HKM 89
3ПД-ЯГ-145-35К1 (К2, К2И)		35	80	3000	198	114
1ПД-ЯГ-145-500		50	76	1900	138	89
2ПД-ЯГ-145 (НКМ)-70К3		70	62	1955	138	(HKM) 89
ПД-ЯГН-148-35	148	35	62	1775	90	89
2ПД-ЯГ-150 (НКМ)-35 (К1, К2)	150	35	76	1985	121	(HKM) 89
3ПД-ЯГ-150-35К1 (К2, К2И)		35	80	2800	207	114
ПН-ЯМ-150-500		50	76	1800	120	89
2ПД-ЯГ-155 (НКМ)-35 (К1, К2)	155	35	76	2005	127	89
3ПД-ЯГ-155-35К1 (К2И)		35	80	2800	216	114
ПН-ЯМ-185-140	185	14	100	2030	100	114
1ПД-ЯГ-185-350		35	100	2200	180	114
ПН-ЯМ-185-500		50	100	2020	170	114
ПН-ЯМ-210-350	210	35	118	2140	250	140 *
ПН-ЯМ-236-350	236	35	145	2170	290	168 *
ПД-ЯГР-243-140	243	14	120	2 850	180	168 *
ПН-ЯМ-265-350	265	35	154	2250	310	178 *

Примечания. 1. Звездочкой обозначена резьба обсадных труб по ГОСТ 624-80, остальные резьбы по ГОСТ 633-80 2. Допустимый перепад давлення — Δp .

ПАКЕРЫ МЕХАНИЧЕСКИЕ ДЛЯ РАЗОБЩЕНИЯ ПРОСТРАНСТВ В КОЛОННЕ

ТУ 26-02-644-86, ТУ 26-02-313-77, ТУ 26-16-10-76

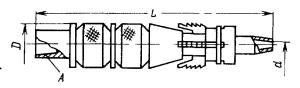


Рис. 10.6. Пакер механический

Таблица 10.15

Швфр	D, мм	d, mm	L, mm	Перепад давления, МПа	Macca, Kr	Резьба <i>А</i>
ПН-М-94-21 ПН-М-112-21 ПН-М-118-21 ПВ (ПН)-М-118-35 ПВ-М-Т-122-140 ПН-М-122-21 ПВ (ПН)-122-35 ПВ-М-(К)-122-50 ПН-М-132-21 ПН-М-136-21 ПВ (ПН)-М-140-40 ПН-М-140-21 ПВ (ПН)-М-140-50 ПВ-М-(К)-140-50 ПН-М-145-21	94 112 118 118 122 122 122 132 136 136 140 140 140 140	40 60 60 45 45 60 76 76 56 59 76 56 62 76	960 1005 1005 730 980 1005 730 870 1035 1035 840 1030 1035 840 920	21 21 21 35 14 21 35 50 21 21 35 14 21 35 50 21	24 35 38 24 27 41 24 27 45 47 33 35 50 33 35	60 73 73 73 73 73 73 73 89 89 89 89 89 89

Примечания 1. Резьба A — по ГОСТ 633—80. 2 $\,$ K — для работы в среде с р ${
m H} < 7$. 3 Усилие распакеровки 125 к ${
m H}.$

ПАКЕРЫ РУКАВНЫЕ ДЛЯ РАЗОБЩЕНИЯ ПРОСТРАНСТВ В КОЛОННЕ ТУ 26-16-15—76

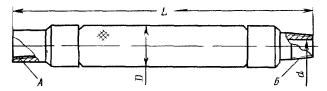


Рис. 10.7. Пакер рукавный

Таблица 10.16

Щяфр	Диаметр обсадной колонны	D, mm	d, mm	L,	Масса, кр	Резьбы <i>А</i> , <i>Б</i>
ПД-Г-118-210 (Қ2) 1ПД-Г-118-210 2ПД-Г-118-210 3ПД-Г-118-210	146	118	62 50 60 62	3088 4075 3950 3850	76 94 95 96	73
ПД-Г-136-210 (Қ2) 1ПД-Г-136-210 2ПД-Г-136-210 3ПД-Г-136-210	168	136	76 62 76 76	3126 3987 3850 3810	99 120 115 116	89

Примечания 1 Перепад давления 21 МПв, температура до 100 °C 2. Гарантийный ресурс работы 8500 ч 3 Резьбы по ГОСТ 633—80.

ПАКЕРЫ-ОТСЕКАТЕЛИ РАЗБУРИВАЕМЫЕ ГИДРАВЛИЧЕСКИЕ ДЛЯ РАЗОБЩЕНИЯ МЕЖТРУБНОГО ПРОСТРАНСТВА ПРИ КАПИТАЛЬНОМ РЕМОНТЕ СКВАЖИНЫ

ТУ 39-01-626—80 Таблица 10.17

Шнфр	Днаметр наруж- ный, мм	Перепад давле- вия, МПа	Длана, мм	Масса, кг	Резьба НКТ
ПР-К (Г)-118-21 ПР-К (Г)-122-21 ПР-К (Г)-136-21 ПР-К (Г)-136-21 ПР-К (Г)-140-21	118 122 136 136 140	21 21 21 21 21 21	990 990 990 990 990	19 19 19 19	73 73 73 73 73 73

Примечание. К, Γ — проходной канал пакера соответственно имеет клапан и заглушен.

ЯКОРЯ ДЛЯ УДЕРЖАНИЯ ПАКЕРОВ НА МЕСТЕ ИХ УСТАНОВКИ

TY 26-02-103-73, TY 26-02-645-87, TY 26-02-226-76, TY 39-01-09-732-81

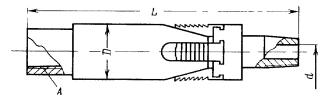


Рис. 10.8. Якорь для удержания пакера

Таблица 10.18

Шяфр	D, mm	d, mm	<i>L</i> , им	Перепад давления, МПа	Масса, кг	Резьба А
197A-90-500 971-112-500 97-118-210 97M-(K)-118-35 971-118-500 97-118-500 97-136-210 97M-(K)-136-35 971-136-500 97-136-500 971-140-500 971-145-500	90 112 118 118 118 118 122 136 136 136 136 140 145	38 62 62 45 62 52 62 76 56 76 76 76	880 840 725 630 840 600 840 790 630 1010 600 1010	50 50 21 35 50 50 21 35 50 50 50	24 35 28 26 38 24 45 45 39 46 37 51	48 73 73 73 73 73 73 73 89 89 89 89 89
ЯК-110/135 ЯК-132/158 ЯК-170/220 ЯК-190/240	110 132 170 190		2600 2600 2800 2800	21 21 21 21 21	100 140 210 250	3-76 3-76 3-121 3-121

Примечания. 1 Якори ЯК — для распакеровки в открытом стволе 2. Резьба 3-76 и 3-12, по ГОСТ 631—75, остальные резьбы по ГОСТ 633—80

11. ПРОТИВОВЫБРОСОВОЕ ОБОРУДОВАНИЕ

11.1. ФЛАНЦЫ, УПЛОТНИТЕЛЬНЫЕ ҚОЛЬЦА

ФЛАНЦЕВЫЕ СОЕДИНЕНИЯ УСТЬЕВОГО ОБОРУДОВАНИЯ (КОЛОННЫХ ГОЛОВОК, КАТУШЕК, ПРЕВЕНТОРОВ, КРЕСТОВИН, ЗАДВИЖЕК, ТРОЙНИКОВ, ПЛАНШАЙБ И Т. П.)

OCT 26-16-1609--79, СТАНДАРТ АНИ Spec. 6A

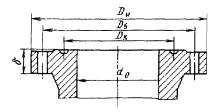


Рис. 11.1. Фланец устьевого оборудования

Таблица 11.1

	Номер	Рабочее	Фл	анец	K	Ольцо		Болты	
do	фланца	давле- ние, МПа	D _H	8	D _K	D _K Homep		число	D ₆
	11/2	21 * 35 * 70 * 70 *	178 178 184 187	38 38 52 42	68,3 68,3 63,5 77,8	R 20 R 20 R 84 BX 151	25 25 25 19	4 4 4 8	124 124 130 146
50	2	14 21 35 70 * 70	165 215 215 197 200	34 46 46 60 44	82,5 95,2 95,2 79,4 86,2	П 23 П 24 П 24 R 85 БХ 152	16 24 24 22 20	8 8 8 8	127 165 165 146 159
65	2 ¹ / ₂	14 21 35 70 * 70	190 245 245 225 230	37 50 50 70 51	101,6 107,9 107,9 90,5 102,8	П 26 П 27 П 27 R 86 БХ 153	20 27 27 25 22	88888	149 191 191 168 184
80	3	14 21 35 70 * 70	210 242 265 254 270	40 46 56 78 58	123,8 123,8 136,5 100,0 119,0	П 31 П 31 П 35 R 87 БХ 154	20 24 30 28 24	8 8 8 8	168 191 203 191 216
100	4	14 21 35 70 * 70	279 292 310 318 316	46 53 62 92 70	149,2 149,2 161,9 123,8 150,6	П 37 П 37 П 39 R 89 БХ 155	24 30 33 35 28	8 8 8 8	216 235 241 241 259

Продолжение табл. 11.1

	Номер	Рабочее	Фл	анец	к	ольцо		Болты	
d ₀	фланца	давле- ние, МПа	D _H	ð	D _K	номер	диа- метр	число	Do
180	6	14 21 35	355 380 395	56 64 92	211,1 211,1 211,1	П 45 П 45 П 46	27 30 36	12 12 12	292 318 318
	71/16	70	480	105	241,8	БХ 156	39	12	403
23 0	8	14 21 35 70	420 470 482 550	64 72 103 124	269,9 269,9 269,9 299,1	П 49 П 49 П 50 БХ 157	30 36 42 39	12 12 12 16	349 394 394 476
2 80	10 11	14 21 35 70	510 545 585 655	72 78 119 141	323,8 323,8 323,8 352,2	П 53 П 58 П 54 БХ 158	33 36 48 45	16 16 12 16	432 470 483 565
350	12 13 ⁵ / ₈	14 21 35 70	580 610 675 768	75 88 113 168	381,0 381,0 408,0 427,0	П 57 П 57 БХ 160 БХ 159	33 36 42 48	20 20 16 20	489 534 591 673
425	16 16³/₄	14 21 35 70	685 705 772 872	85 100 130 168	469,9 469,9 475,3 475,3	П 65 П 65 БХ 162 БХ 162	39 42 48 48	20 20 16 24	603 616 676 776
520	20	21	858	121	584,2	П 74	52	20	750
540	20	14 35	812 990	99 181	584,2 632,0	П 73 БХ 165	42 52	24 24	724 886

Примечания. 1. По ОСТ обусловлен условный проход, по стандарту АНИ — номер фланца. 2. Диаметр болгов по стандарту АНИ может быть на 1—2 мм меньше, чем по ОСТ. 3. Звездочкой указаны фланцы, язготовляемые только по стандарту АНИ. 4. Кольцо П эквивалентно кольцу R, кольцо БХ — кольцу ВХ 5. Размеры в мм.

ФЛАНЦЫ СТАРОЙ КОНСТРУКЦИИ

OH 26-02-148-69, OH 26-02-149-69

Таблица 11.2

,	Рабочее даяле-	Фланец		F	(ольцо	Болты			
d ₀	ние, МПа	D _H	δ	D _K	сеченне	диаметр	число	Do	
75	21,32,50	240	40	110	16×11,1	27	8	190	
152	14 21 32	330 320 395	36 48 50	194 190 205	18×12,7 16×11,1 16×11,1	30 27 36	8 12 12	275 280 325	
175	20, 32 50	39 5 435	50 90	205 - 210	16×11,1 21×15,9	36 42	12 12	325 360	

Продолжение табл. 11.2

_	Рабочее давле-	Фл	ан ец	ŀ	Ольцо	Болты			
d ₀	HHE, MIIA	D _H	ð	$D_{\mathbf{R}}$	селение	диаметр	OWSHD	D ₆	
230	32, 50	525	70	290	21×15,9	48	12	440	
307	20 32	620 620	75 75	360 360	18×12,7 18×12,7	42 48	16 16	530 530	
406	12,5	675	80	470	18×12,7	42	16	530	

Примечания. 1. Флянцы применялись в колонных головках, катушках, престовинах и т. п. 2. Конструкцию см. на рис. 11.1. 3. Размеры в мм.

УПЛОТНИТЕЛЬНЫЕ КОЛЬЦА ВОСЬМИУГОЛЬНОГО СЕЧЕНИЯ

ОСТ 26-16-1611-79, СТАНДАРТ АНИ SPEC. 6А

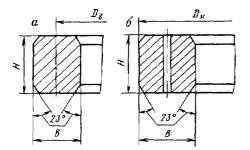


Рис. 11.2. Уплотнительное кольцо

Таблица 11.3

Номер кольца	Диа- метры D _B , D _H	Ширина В	Высота <i>Н</i>	Номер кольца	Диа- метры D _B , D _B	Ширина <i>В</i>	Высота <i>Н</i>
Tr 20	и П (R) (68,3 82,5 95,3 101,6 108,0 123,8 136,5 149,2 161,9 181,0 193,7 211,1	phc. 11.2, 7,9 11,1 11,1 11,1 11,1 11,1 11,1 11,1	a) 13 16 16 16 16 16 16 16 16 16 16 16 18	П 49 П 50 П 53 П 54 П 57 П 65 П 66 П 73 П 74 R 84 R 85 R 86 R 87 R 89	269,9 269,9 323,9 381,0 469,9 584,2 584,2 63,5 79,4 90,5 100,0 114,3	11,1 15,9 11,1 15,9 11,1 15,9 12,7 19,0 11,1 12,7 15,9 15,9	16 21 16 21 16 16 18 21 18 24 16 18 21 21

Продолжение табл. 11.3

Номер кольца	Ди1- метры D _B , D _H	Ширина В	Высота <i>Н</i>	Номер кольца	Диа- метры D _B , D _H	Ширина В	Высота <i>Н</i>
Тип БХ 151 БХ 152 БХ 153 БХ 154 БХ 155	5X (BX) 76,4 84,7 100,9 116,8 148,0	9,6 10,2 11,4 12,4 14,2	2, 6) 9,6 10,2 11,4 12,4 14,2	BX 156 BX 157 BX 158 BX 159 BX 160 BX 162 BX 165	237,9 294,5 352,0 426,7 402,6 475,5 624,7	18,6 21,0 23,1 25,7 13,7 14,2 14,2	18,6 21,0 23,1 25,7 23,8 14,2 14,2

11.2. ОБОРУДОВАНИЕ ОБСАДНЫХ КОЛОНН

TY 26-02-579 -74, TY 26-02-728-76, TY 26-16-133-81, TY 26-16-134-81, TY 26-16-183-85

Оборудование для обвязки обсадных колонн ОКК (рис. 11.3) состоит из нижней головки ГКН соответствующего размера, одной или нескольких промежуточных головок ГКП (при обвязке трех и более колонн) и манифольда с задвижками $3MC1-65\times210$, $3MC15-100\times210$, $3MC1-65\times350$ или $3MAД-50\times700$. Все колонные головки — с клиновыми подвесками. В табл. 11.4 приведены сочетания диаметров обсадных колонн, которые могут обвязываться в любом сочетании колонными головками.

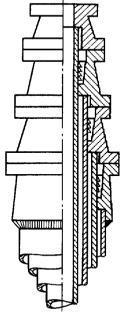


Рис. 11.3. Оборудование для обвязки обсадных колони

Таблица 11.4

	ee tue,	Диаметр кондукто-		труб, мм, под- мых в головках
фијјј	Рабочее давление, МПа	ра (головка ГКН), мм	ГКН	гкп
OKK1	14	245, 219	140, 146, 168	
	21, 35	273, 245, 219	140, 146, 168	_
OKK2	21	324	245	140, 146, 168, 178
	35	299 426, 377, v 324, 299	219 245, 219	140, 146 140, 146
		426, 377, 324, 299	245	168, 178
		426, 377	273	140, 146, 168, 178
	70	324	245	168, 178
ОККЗ	35, 70	426 426, 377 426, 377	324, 299 324, 299 324, 299	245, 219, 140 245, 219, 146 245, 219, 168
יסת	Ниврани	е. При заявке у	казываются	шифр ОКК, рабо-

Примечание. При заявке указываются шифр ОКК, рабочее двяление и необходимое сочетание диаметров обязываемых обсадных колони: ОКК1-21-168×273, ОКК2-35-140×219×377, ОКК3-70-146×245×324×426.

ФЛАНЦЫ КОЛОННЫХ ГОЛОВОК В ОКК

Таблица 11.5

Обору	дование		Be	рхний ф	ланец в	юнново	й голови	ЕН
Illuda	Рабочее	Диаметр кондукто- ра, мы	кондукто- нижней		промежу- точной		верхней	
Шифр	давлени е, МПа		D _y	p _p	D _y	ρp	Dу	p _p
ОКК1	14 21 21 35 35	245, 219 273 245, 219 273 245, 219	280 350 280 350 280	14 21 21 21 35 35		 	_ _ _ _	 - - -
ОҚҚ2	21 35 35 70	324, 299 426, 377 324, 299 324	350 425 350 350	21 21 21 35		1111	280 280 280 230	21 35 35 70
ОКК3	35 70	426, 377 426, 377	425 425	21 21	350 350	21 35	280 280	35 70
КΓ-4	70	426	425	35	350	35	230	70

Примечание. p_y — условный диаметр проходного отверстия фланца, мм; p_p — рабочее давление фланца, МПа.

ФЛАНЦЫ КОЛОННЫХ ГОЛОВОК, СНЯТЫХ С ПРОИЗВОДСТВА

Таблица 11.6

Оборуд	ованне			Верхний фланец колонной головки									
	Рабочее давле-	Диаметр кондукто- ра, мм	ния	ней	I прог	межу- ной	И пр	е- понь-	верз	кней			
Шифр	нне, МПа		Dy	p _p	Dy	p _p	Дy	p _p	Dy	p _p			
ООК1	20	219299	307	20	_	_	_		175	20			
OOK2	20 32 32 50	324 324—426 299 324—426	406 406 307 406	12,5 12,5 32 12,5	307 307 230 230	20 32 32 50	_	 - -	175 175 175 175	20 32 32 50			
ООК3	32 50	426 426	406 406	12,5 12,5	307 307	32 32	230 230	32 50	175 175	32 50			

Примечание. См. примечание к табл. 11.5.

ОБОРУДОВАНИЕ ОБСАДНЫХ КОЛОНН

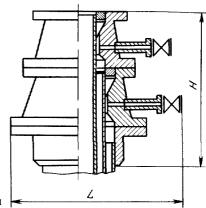


Рис. 11.4. Оборудование обсадных колонн

Таблица 11.7

Оборуд	ование			анец кн ей			
	Рабочее	Диаметр кондуктора		овки	Длина <i>L</i>	Высота <i>Н</i>	Mac- ca. Kr
Шифр	давлени е, МПа		Dy	DH			
ОККІ	14 21	245, 219 273	280 350	355 610	1080	555	290
	21 35 35	245, 219 273 245, 219	280 350 280	545 675 585	1020 — 1020	535 580	730 780
ОҚҚ2	21 35 35 70	324, 299 426, 377 324, 299 324	350 425 350 350	610 705 610 675	1060 1450 1180 1190	1130 1300 1320 1100	1590 1650 1500 1750
OKK3	35 70	426, 377 426, 377	425 425	705 705	1450 1450	2000 2055	3300 4050
ΚΓ-4	70	426	425	770	1200	1580	3000

Примечания. 1. $D_{\overline{y}}$ — условный диаметр проходного отверстия фланца, $D_{\overline{H}}$ — наружный диаметр фланца. 2. Прочерк овначает, что ОКК серийно еще не изготовляют. 3. Размеры в мм.

11.3. ГОЛОВКИ КОЛОННЫЕ

головки колонные нижние гкн СТАНДАРТ АНИ 8 RD

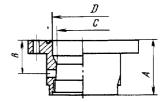


Рис. 11.5. Колонные головки нижние

9*

Таблица 11.8

Номер фланца	Рабочее давле- ние, МПа	Днаметр кондук- тора	A	В	С	D	Macca, kr
6	14 14 14 21	139,7 168,3 177,8 177,8	343 343 343 419	172 172 172 216	130,6 158,3 161,9 161,9	177,8 177,8 177,8 177,8	_ _ _
8	14 21 14 21	193,7 193,7 219,1 219,1	398 359 398 359	216 203 216 203	183,4 184,9 183,4 203,2	226,2 226,2 226,2 226,2	_ _ _
10	14 21 35 14 21 35 14 21	219,1 219,1 219,1 244,5 244,5 244,5 273,1 273,1	432 441 425 413 413 413 413 413	257 241 259 241 241 259 241 241 259	208,4 207,6 223,8 233,4 233,4 233,4 254,0 254,0	279,4 279,4 279,4 279,4 279,4 279,4 279,4 279,4 279,4	210 210 210 210 210 210 210 210 210 210
12	14 21 14 21	298,5 298,5 339,7 339,7	419 432 368 394	240 240 240 240 240	289,3 289,3 320,7 320,7	345,3 345,3 345,3 345,3	235 235 235 235 235
$13^{6}/_{8}$	35	339,7	457	317	320,7	345,3	235
16	14 21	406,4 406,4	445 445	240 245	390,5 390,5	423,1 423,1	380 380
20	14 21	508,0 508,0	470 457	273 273	476,2 476,2	502,4 502,4	700 700

примечание. Размеры в мм.

головки промежуточные гкп, применяемые в окк

OCT 26-02-775-73

Таблица 11.9

Швфр	метр пр	ый диа- оходного я фланца	Диаметр	фланца	нутрен- ий диа- етр	Высота
	нижнего	верхнего	нижнего	верхнего	Виў ний метр	BE
ГКП-К-280×21-350×21 ГКП-К-280×35-350×21 ГКП-К-280×70-350×35 ГКП-К-280×70-350×35 ГКП-К-280×35-425×21 ГКП-К-350×21-425×21 ГКП-К-350×35-425×21 ГКП-К-350×35-425×35	350 350 350 350 425 425 425 425	280 280 230 280 280 350 350 350	610 610 675 675 705 705 705 772	545 585 550 655 585 610 675 675	252 252 203 252 252 252 350 350	610 640 680 710 680 680 690 720

Примечание Размеры в мм.

ГОЛОВКА ПРОМЕЖУТОЧНАЯ ТИПА WF

КАТАЛОГ ФИРМЫ «КАМЕРОН»

Таблица 11.10

Нижний	фланец	Верхни	й фланец	Дна	метр	
D _y	pp	D _y	pp	под уплот- няющий элемент	внутренний	Высота
280	14	180 230 280 230 230 280	14 14 14 21 21	177,8 226,2 279,4 226,2 279,4	162 203 225 203 225	430 400 445 400 445
280	21	230 280 280	21 . 21 . 35	226,2 279,4 279,4	203 225 225	400 445 450
2 80	35	280	35	279,4	225	485
280	70	280	70	279,4	225	725
350	14	230 280 350 230 280 350	14 14 14 21 21 21	226,2 279,4 345,3 226,2 279,4 345,3	203 254 278 203 254 278	400 470 450 400 450 450
350	21	180 230 280 350 280	21 21 21 21 21 35	177,8 226,2 279,4 345,3 279,4	162 203 254 278 225	600 400 450 450 450
350	35	280 280	35 70	279,4 279,4	225 225	730 730
350	70	280	70	279,4	225	800
425	14	280 350 280 350	14 14 21 21	279,4 345,3 279,4 345,3	254 320 254 320	445 425 445 440
425	21	280 280	21 35	279,4 279,4	254 254	445 500
540	14	350	21	345,3	320	640
525	21	350	35	345,3	320	690

Примечания. 1. D_{y} — условный диаметр проходного отверстия головки, ρ_{p} — рабочее давление, МПа. 3. Размеры в мм.

11.4. ҚАТУШКИ ФЛАНЦЕВЫЕ

OCT 26-16-1601-77

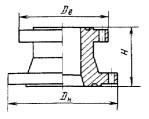


Рис. 11.6. Катушка фланцевая

Таблица 11.11

D _y >	<ppp< th=""><th>Днаметр</th><th>фланца</th><th></th><th></th></ppp<>	Днаметр	фланца		
нижни й фланец	верхний фланец	нижнего <i>D</i> н	верхнего <i>D</i> в	Высота <i>В</i>	Масса, кг
	Фл	анцы по ОСТ	r 26-16-1610—	-79	
180×21	180×21	380	380	350	110
180×35	180×14	395	355	450	150
	180×21	395	380	465	140
180×70	180×35	395	395	500	160
	180×35	480	395	540	245
230×35	180×70	480	480	550	320
	180×35	482	395	540	220
200 × 00	230×21	482	470	520	220
230×70	230×35	482	482	550	270
	180×70	550	480	610	440
	230×35	550	482	615	405
	230×70	550	550	630	475
280×14	230×35	510	482	510	300
280×21	230×35	545	482	525	280
	280×21	545	545	435	260
280×35	230×35	585	482	625	490
	230×70	585	550	645	495
	280×14	585	510	580	360
	280×21	585	545	600	345
	280×35	585	585	640	447
280×70	230×70	655	550	705	640
	280×35	655	585	700	650
280×70	280×70	655	655	725	760
350×21	350×21	610	610	475	320
350×35	350×21	675	610	550	455
350×70	350×35	675	675	590	545
	350×35	768	675	785	1000
	350×70	768	768	840	1220
425×14	425×14	685	685	470	385
425×21	425×14	705	685	530	465
	425×21	705	705	545	400
		•	CT 26-02-764-		
100×32	80×32	300	265	310	50
100×35	80×35		265	350	60
156×32	156×32	395	395	330	85

Продолжение табл. 11.11

D _y ;	< p _p	Диамет	р фланца			
нижний фланец	верхний фланец	нижнего $D_{\rm H}$	верхнего <i>D</i> _в	Высота Н	Macca, Kr	
307×20 307×32 $406 \times 12,5$	307×20 230×50 307×20 307×32 307×32	620 620 620 620 620 675	620 525 620 620 620	445 460 445 445 485	360 380 355 365 400	
190 × 14	·			465 26-02-764—73		
180×14 180×21 180×35 280×21 280×35	$\begin{array}{c} 156 \times 32 \\ 156 \times 32 \\ 156 \times 32 \\ 307 \times 32 \\ 307 \times 32 \\ 307 \times 32 \\ \end{array}$	355 380 395 545 585	395 395 395 620 620	320 345 450 445 595	85 100 125 300 420	
350×21 350×21 350×35 425×14 425×21	307×20 307×32 307×32 $406 \times 12,5$ 307×32	610 610 675 685 7 05	620 620 620 620 675 620	460 460 550 465 530	335 330 480 405 410	

Примечания. 1. $D_{\overline{y}}$ — условный днаметр проходного отверстня катушки, $p_{\overline{p}}$ — рабочее дзвление, МПа. 2. Размеры в мм.

11.5. ОБОРУДОВАНИЕ ПРОТИВОВЫБРОСОВОЕ

комплектность оборудования противовыбросового

TY 26-16-211—87, TY 26-16-95—79, TY 26-16-115—80, TY 26-16-131—81, TY 26-16-184—85

Таблица 11.12

Шнфр	Универсаль- ный превентор	Плашечный превентор	Манифольд	Масса комплекта, кг
O∏K-180×35 O∏2-230×35 O∏2-230×70 O∏3-230×70 O∏2-280×35 O∏2-350×35 O∏1-425×21 O∏2-425×21 O∏1-520×14 O∏2-520×14	ПУ1-180×35 ПУ1-230×35 ПУ1-230×35 ПУ1-230×35 ПУ1-280×35 ПУ1-280×35 ПУ1-350×35	ППГ-180×35 ППГ-230×35 ППГ-230×70 ППГ-230×70 ППГ-280×35 ППГ-350×35 ППГ-425×21 ППГ-425×21 ППГ-520×14 ППГ-520×14	МПБ2-80×35 МПБ2-80×35 МПБ2-80×70 МПБ3-80×70 МПБ2-80×35 МПБ2-80×35 МПБ2-80×35 МПБ2-80×35 МПБ2-80×35 МПБ2-80×35 МПБ2-80×35	16 000 16 000 17 600 18 400 19 500 22 700 15 700 14 500 12 200 14 400

превенторы универсальные

Таблица 11.13

***	Шнфр	Днаметр.	Высота.	Macca.		N .
Шифр	фланца	ММ	мм	Kr	без давления	при давлении
ПУ1-230×35	230×35	900	1170	3 300	500	30
ПУ1-280×35	280×35	1200	1270	4000	500	15
ПУ1-350×35 ПУ1-180×35	350×35 180×35	1300 890	1430 —	8000 —	100 300	5 15

Примечание. N = гарантийный ресуро работы (циклов) при закрытии превентора на трубе

превенторы плашечные

TY 26-16-159-84, TY 41-01-568-87, TY 26-16-184-85, TY 26-16-211-87

Таблица 11.14

Шифр	Условный днаметр проходного отверстия	Рабочсе давление, МПа	Уплотняе- мый дна- метр	Дли- на	Ши- рина	Высо- та	Mac- ca, kr
ΠΓ-100×35	100	35	33—73	1660	37 0	480	288
ППГ-150×21	150	21	50—89	1620	465	500	470
ППГ-180×35	180	35	73114	1750	570	500	1300
ППГ-230×35	230	35	73 —168	2085	670	550	1500
ППГ-230×70	230	70	73168	2630	790	700	2500
ΠΠΓ-280 \times 35	280	35	73—219	2480	795	500	1430
ΠΠΓ-350×3 5	350	35	73—273	2740	845	420	1400
ΠΠΓ-425×21	425	21	73—340	3750	910	500	1970
ΠΠΓ-520×14	520	14	73—426	3050	935	570	2370
	Превентор	ы, снят	ъ с произв	одства			
ППГ-30 7 ×32	307	32	114-219	2390	750	430	1460
ΠΠΓ-406×12,5	406	12,5	114—273	2600	900	580	1485

Примечания. 1 Шифр присоединительного фланца— (условный проход×рабочее давление) 2 Гарантированный срок службы— 300 циклов закрытия— открытия без давления снизу 3 Размеры в мм.

манифольд противовыбросового оборудования

ТУ 26-02-728-76, ТУ 26-16-167-85

Таблица 11.15

777 4	Габариты	блока, мм	Mac-
Шифр	дросселнрования	глушення	са, кг
МПБ2-80×35 МПЬ3-80×35 МПБК3-80×70	3230×2160×1170 3230×2160×1170 3000×1750×2350	1130×1085×1170 1130×1085×1170 1200×1600×1380	8 260 8 890 12 470

Примечание Манифольд укомплектован регулируемым дросселем ДР и вадвижками типа 3M и $3M\Gamma$.

превенторы плашечные

ФИРМА «ИНДУСТРИАЛЭКСПОРТИМПОРТ», РУМЫНИЯ

Таблица 11.16

Условный пиаметр	Уплотнен-	Рабочее павле-	Дли-	Шя-	Выс преве		Масса пре- вентора, кг	
проходного отверстия	ный диаметр	ние, на МПа	на рина	оди- нар- ного	двой- ного	оди- нар- ного	двой- ного	
180	48—114 114—140 48—114 114—140 48—114 114—140	21 21 35 35 70 70	2380 1706 2380 1702 2380 1700	700 725 830	870 338 860 470 895 505	668 680 770	1410 908 1510 1197 1620 1675	1227 1620 2165
230	114—178	21 35 7 0	1880 1850 2 030	741 855 842	375 375 380	720 780 825	1350 1700 2260	1825 2300 3050
280	114—219	21 35 70	2020 2100 2100	825 900 970	410 440 500	760 835 920	1410 2120 2640	1900 2860 3570
350	114273	21 35 70	2250 2250 2250	913 990 1155	410 458 5 00	780 860 970	2060 2630 3130	2785 3550 4230
425	114340	21 35	2480 2480	1000 1050	410 5 05	800 900	2700 3330	3640 4500

Примечания 1 Тип одинарного плашечного превентора для НКТ с гидроприводом — SHE, то же для бурильных и обсадных труб — SF, сдвоенного (двойной) для бурильных в обсадных труб — DF $\,^2$ Размеры в мм

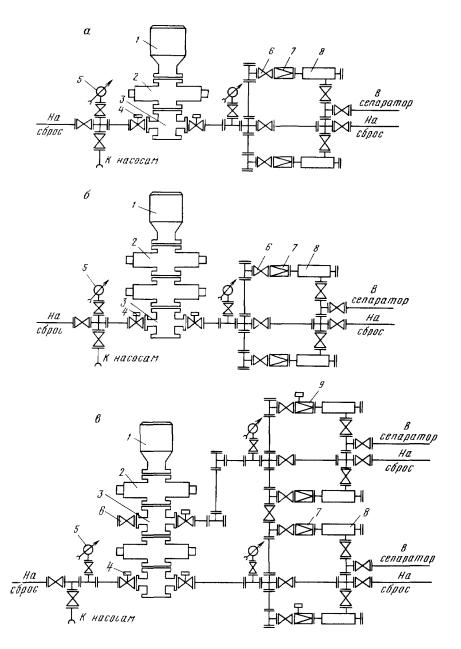


Рис. 11.7. Схемы монтажа противовыбросового оборудования:

a — ОП1; δ — ОП2; s — ОП3; l, 2 — универсальный и плашечный превенторы; s — устьевая крестовина; 4, δ — задвижки с гидравлическим и ручным управлением; δ — манометр с запорным и разрядным устройствами; 7, 9 — регулируемые дроссели с ручным и ридравлическим управлением; δ — отбойная камера с разрядным устройством

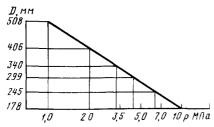


Рис. 11.8. Зависимость давления в системе управления ПУГ от диаметра герметизируемых обсадных труб

990 MNa 10 89 70 340 35 127 340 0 7 14 27 28 Pg MNa

Рис. 11.9. Зависимость давления в системе управления Π УГ 350×35 г Π УГ 425×35 от давления на устыскважины для герметизации труб диаметром 89-340 мм

превенторы универсальные

ФИРМА «ИНДУСТРИАЛЭКСПОРТИМПОРТ», РУМЫНИЯ

Таблипа 11.17

Условный диаметр проходного отверстия	Рабочее давле- ние, МПа	Шифр фланца	Диаметр корпуса	Высота	Macca, Kr	Расход жидкости для пол- ного закры- тия, л
180	21	180×21	740	815	1245	36
	21	180×35	740	840	1265	36
	70	180×70	1090	1255	5265	3 6
230	21	230×21	900	1105	3000	26
	35	230×35	1020	1105	3035	26
	35	230×70	1020	1130	3040	26
280	21	280×21	1050	1010	2350	28
	35	280×35	1140	1275	3800	37
	35	280×70	1140	1290	3910	37
350	21	350×21	1270	1150	4400	43
	35	350×35	1330	1500	5930	78
	35	350×70	1330	1550	6250	78
425	21	425×21	1530	1375	7060	80
	21	425×35	1530	1405	7140	80

Примечание. Размеры в мм.

превенторы вращающиеся

ТУ 26-02-440-72

Таблица 11.18

Шифр превениора	Шифр фланца	Днаметр уплотняе- мых труб	Давление без рас- хажи- вания, МПа	Дли- на	Ши• рина	Высо- та	Mac- ca, Kr
ПВ-156×320 ПВ-230×10 ПВ-230×320 Бр-1	156×32 230×35 230×32	60—89 60—114 73—114	32 1 32	660 1120 875	570 620 680	1570 1200 1550	1960 560 1650
ПВ-307×10 ПВ-307×200 Примечания. 1.	307×20 307×20 Частота вр	114—140 73—114 защения ротора	1 20 не более	1120 816 100 o6/w	620 730	1100 1800 Размеря	590 1560 same.

11.6. ЗАПОРНАЯ АРМАТУРА

задвижка прямоточная для пво

ТУ 26-02-728-76, ТУ 41-01-137-80

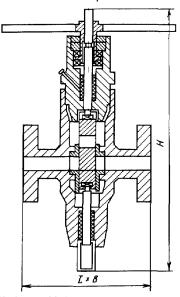


Рис. 11.10. Задвижка прямоточная

Таблица 11.19

Шифр	Условный диаметр проходного отверстия	Рабочее давле- ние, МПа	Длана L	Ширина В	Высота <i>Н</i>	Magga, KP
$3M-80 \times 35$	80	35	400	360	945	122
3M-80Γ×35	80	35	400	320	1220	162
$3M-80 \times 70$	80	70	500	465	1155	247
3M-80Γ×70	80	70	500	465	1420	257
ЗВД-200/4	100	20	366	250	685	56
Примечани	е. Размеры в мм	· ·	•	•	•	•

кран пробковый проходной

TY 39-01-320-77, TY 26-16-24-77, TY 26-16-88-79

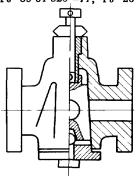


Рис. 11.11. Кран пробвовый

Таблица 11.20

Шнфр	Условный днаметр проходного отверстия	Рабочее давле- ние, МПа	Дли- на	Ширина	Высота	Macca, KF
2KM-000 KIIIIC-65×14 KIITC-65×14 KIIIICII-65×21 KIIIIC-65×21	40 65 65 65 65	70 14 14 21 21	215 350 350 765 400	148 205 288 305 215	295 420 430 568 475	53 60 160 90

Примечание. Размеры в мм.

ЗАДВИЖКА ПЕРФОРАЦИОННАЯ

TY 26-02-8-72, TY 26-02-728-76, TY 26-16-76-78



Рис. 11.12. Задвижка перфорационная

Таблица 11.21

Шифр	Условный диаметр проходного отверстия	Шифр фланца	Выео- та <i>Н</i>	Дли- на <i>Б</i>	Ширнна <i>В</i>	Macca, kr
ЗФПЛ-125×14 ЗФКЗ-150×21 ЗПК-150×35 ЗМ-130×70K3	125 150 150 150 130	180×14 180×21 180×35 180×70	500 435 670 700	820 1490 1190 1460	355 450 640 7 10	240 495 557 600

Примечание. Размеры в мм.

ГОЛОВКИ ГЕРМЕТИЗИРУЮЩИЕ ДЛЯ СПУСКА И ПОДЪЕМА ТРУБ ПОД ДАВЛЕНИЕМ

ТУ 39-01-236-76, ТУ 39-01-08-551-80, ТУ 39-01-06-676-81

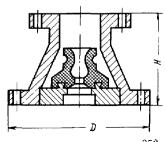


Рис. 11.13. Головка герметнянрующая

Таблица 11.22

		Днам	етр			
Щвфр	Шифр фланца	условный проходного отверстия	уплот- Еяемый	Диаметр <i>D</i>	Высота <i>Н</i>	Macca, kp
ГГ-8 ГГ-12 ГГ-230×210 ГУ-120 ГУ-140	230×32 350×21 230×32 180×35 180×35	230 340 230 120 140	60—102 60—140 60—89 —	530 605 525 395 395	830 1130 445 255 255	380 900 280 85 180

Примечания. 1. Рабочее давление головок 21 МПа. 2. Размеры в мм.

ПЕРЕВОДНИКИ ФЛАНЦЕВЫЕ ДЛЯ ПОДСОЕДИНЕНИЯ ГЕРМЕТИЗИРУЮЩЕЙ ГОЛОВКИ ГГ-12 К ПРЕВЕНТОРАМ ТИПА ППГ

ТУ 39-01-237-76

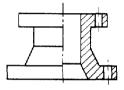


Рис. 11.14. Переводния фланцевый

Габлица 11.23

Шифр	Шифр вижнего фланца	Шифр верхнего фланца	Вну- Френний диаметр, мм	Beigova, mm	Mac- ca, Kr
ПФ-ППГ 350-ГГ-12	350×35	350×21	340	445	500
ПФ-ППГ 307-ГГ-12	307×32	350×21	307	430	420
ПФ-ППГ 230-ГГ-12	230×32	350×21	230	400	285

КРАН ШАРОВОЙ

ТУ 51-09-86, ТУ 39-1045-85

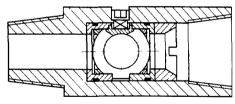


Рис. 11.15. Кран шаровой

Таблица 11.24

	Диаме	етр, мм	Дли-	Macca.		Давле- ние	Грузо- подъем-
Шифр	наруж- ный	вну- Френний	на, мм	KP	Резьба	рабочее, МПа	ность, иН
КШЦ-146 КШЦ-155 КШЦ-178 КШВН-178	146 155 178 178	60 68 80 70	410 445 490 545	35 41 55 59	3-121 3-133 3-147 3-147	35 35 35 70	1900 1800 2750 3000

Примечание. Переопрессовка через каждые 100 ч бурения.

РАСХОД ЖИДКОСТИ (л) ПРИ РАБОТЕ ПРЕВЕНТОРОВ

Таблица 11.25

Днаметр Услов-	D	CC	CCP		Фн	рмы			
ного проход-	Рабочее давле- ние.			«Камерон»		∢Шаф	фер я		
ного отвер- втия, мм	МПа	Закрыть	Открыть	Закрыть	Открыть	Закрыть	Открыть		
	Плашечные превенторы								
180 230 280 280 307 350 350 425 520	35 35 21, 35 70 20, 32 21, 35 70 14, 21 14, 21	7 9 10 15 11 13 19 15 18	6 7 9 13 9 11 16 13 16	6 12 22 — 20 25 38 30	20 20 20 24 36 28	10 10 11 31 — 20 43 14 19	9 10 10 26 — 17 39 11		
			Универ	сальные пр	ревенторы				
180 230 280 350	35 35 35 35	16 27 42 90	12 21 35 75	6 	5 18 40	17 40 70 90	12 32 55 70		

11.7. АРМАТУРА ФОНТАННАЯ И ЕЕ ЭЛЕМЕНТЫ

АРМАТУРА ФОНТАННАЯ

ГОСТ 13846-84, СТ СЭВ 4354-83

Тип подвески: в муфтовой подвеске трубной головки — без обозначения, на резьбе переводника трубной головки — K, подводное исполнение — П, блочное — Б, с хомутовыми соединениями — X.

Вид управления: ручное — без обозначения, дистанционное — Д, автоматическое с отсекателем — А, дистанционное с отсекателем — В.

Исполнение по коррозионности: обычное — без обозначения, при содержании CO_2 до 6 % — K1, CO_2 и H_2S до 6 % — K2, H_2S до 6 % — K3, CO_2 и H_2S до 6 %, но с обязательным применением ингибитора — K2H.

Климатическая зона применения: умеренная — без обозначения, холодная — XЛ.

Пример обозначения: $A\Phi 6A - 80/50 \times 700$ К2И ХЛ — арматура фонтанная (тип подвески) (схема монтажа) (вид управления) — (диаметр проходного отверстия ствола)/(диаметр проходного отверстия отвода) \times (рабочее давление) (исполнение по коррозионности) (климатическая зона применения).

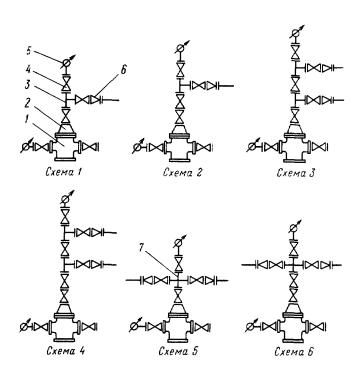


Рис. 11.16. Схемы монтажа фонтанной арматуры:

I — крестовина колонной головки, 2 — трубная головка; 3 — тройник; 4 — задвижка; 5 — манометр; 6 — дроссельное устройство; 7 — крестовина фонтанной елки 256

АРМАТУРА ФОНТАННАЯ

TY 26-16-23-77, TY 26-16-46-77, TY 26-02-728-76

Таблица 11.26

Шяфр	Иифр верхнего фланца трубной головки	Ши- рина	Длина	Высота	Macca, kr
АФ1-65×14 (ХЛ)	65×14	420	1300	1755	660
АФ3-65×14 (ХЛ)		420	1300	2465	870
АФ3 ₀ -65×14 (ХЛ)		420	1300	2860	1120
АФ5-65×14 (ХЛ)		420	1300	1755	760
$egin{array}{l} A\Phi 1-65 imes 21 \\ A\Phi 3-65 imes 21 \\ A\Phi 3-65 imes 21 \\ A\Phi 3a-65 imes 21 \\ A\Phi 5-65 ime$	65×21	790 790 760 790 790	1360 1360 1920 1360 1590	1615 2105 2675 2610 1870	850 1065 1358 1325 965
АФ1 80/65×21 ХЛ	80×21	885	1052	2200	1015
АФ5-80/65×21 ХЛ		885	1800	2200	1160
АФ1-100/65×21 ХЛ	100×21	1150	1700	1975	1650
АΦ6-100×21 ХЛ		1120	3570	3120	2970
АΦ6B-100×21 Қ2		1400	3570	3120	3730
АΦ6B-100×21 Қ2И		1410	3360	2720	3875
АФ6-150/100×21 ХЛ	150×21	1485	3650	2900	3600
АФ6B-150/100×21 ХЛ		1570	3 650	2900	3960
AФ1-65×35	65×35	760	1350	1900	1100
AФ3-65×35		760	1350	2610	1360
AФ3-65×35 K1		760	1920	2675	1360
AФ3 ₂ -65×3 5		760	1350	3190	1710
AФ5 65×3 5		760	1590	1930	1235
АФ6-80/65×35 ХЛ	80×35	885	2510	2675	2255
АФ6В-80/65×35 ХЛ		1245	2510	2675	1940
АФ6В-8∪/65×35 К2*		1180	2315	2760	2540
АФ6-100×35 (ХЛ, К1)	100×35	1130	3590	2865	3685
АФ6-100×35 (К2, К2И)		1130	3540	2945	4630
АФ6В-100×35 (ХЛ, К1)		1400	3900	3300	5000
АФ6В-100×35 (К2, К2И)		1400	3540	2945	5 000
AΦ6B-50×700*	50×70	970	2500	2950	2480
AΦ6-65/50×700 (K1)*	65×70	1110	2575	3150	2700
AΦ6a-65/50×700*	65×70	1070	2230	3800	3550
AΦ6a-80/50×700 K2*	80×70	1530	3350	3870	5000
AΦ6-65×700 K1	65×70	1110	2650	3110	3110
	1				I

Примечания. 1. Арматура АФЗа аналогична по схеме чолтажа АФЗ, но имеет две крестовины 2 Звездочкой обозначена арматура, выпускаемых только с муфтовой подвеской в трубной головке, остальная арматура выпускается как с муфтовой подвеской, так и на резьбе переводника трубной головки (АФК) 3 Высота и масса АФК несколько меньше АФ, указанных в таблице 4. Размеры в мм.

манифольд фа

TY 26-16-170-84, TY 26-16-188-86, TY 26-02-728-76

Таблица 11.27

Шнфр	Шифр фланцев	Масса, кр	Тип эадвижки
MAΦ-65×35 K2	65×35	1720	3MC1-65×35 K2
MAΦ-80×35 XЛ	80×35	2265	3MC1-65×35
MAΦ-100×21 XЛ	100×21	3170	3MC-100×21
MAΦ-100×35 XЛ	100×35	4245	3MC-100×35
MAΦ-80×70 (K2)	80×70	5160	3MAД-80×700 M

крестовины, тройники

OCT 26-16-1603-78

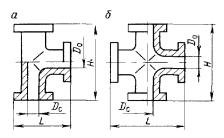


Рис. 11.17. Увлы манифольда ФА: $a \rightarrow$ тройник; $\delta \rightarrow$ крестовина

Таблица 11.28

	Шифр	фланца	Для	Ha L		Mace	a, kr
Шифр ФА	ствола <i>D</i> _С	ола $D_{\rm G}$ отвода $D_{\rm O}$ трой- ника крес- тови- ны		Beigo- va H	трой- ника	крес- тови- ны	
65×14	65×14	65×14	260	330	330	30	39
65×21 $80/65 \times 21$ 100×21 $100/65 \times 21$ $150/100 \times 21$	65×21 80×21 100×21 100×21 150×21	65×21 65×21 100×21 65×21 100×21	328 339 386 371	410 435 480 450	410 395 480 430	60 58 98 80	79 72 125 98 —
65×35 80/65×35 100×35	65×35 80×35 100×35	65×35 65×35 100×35	328 353 430	410 440 550	410 460 550	60 83 125	79 96 160
50×700 65/50×700 80/50×700	50×70 65×70 80×70	50×70 50×70 50×70	275 305 345	350 380 420	350 390 430	38 53 73	50 64 85

Примечание. Размеры в мм.

ЗАДВИЖКИ ПРЯМОТОЧНЫЕ

Задвижки конструктивно подразделяются следующим образом. По уплотнению: М — металл по металлу, У — с упругим элементом.

По системе подачи смазки: А — автоматическая, С — принудительная. 1 — односторонняя подача смазки.

По конструкции шибера: Д — двухпластинчатый, Р — расклинивающийся, не указано — однопластинчатый.

По управлению: Г — гидравлическое, П — пневматическое, А — автоматическое (отсекатель), не указано — ручное.

По коррозионностойкости: K1— коррозионностойкие к агрессии углекислоты до 10 %, K2— коррозионностойкие к агрессии углекислоты и сероводорода до 6 % каждого, K2И— то же с применением ингибитора, не указано— некоррозионностойкие.

ЗАДВИЖКИ ДЛЯ ФА

TY 26-16-186-86, TY 26-16-45-77, TY 26-02-521-73, TY 26-02-728-76

Таблица 11.29

Шафр	Шифр	Длина	Ширина	Bricova	Macca,
	фланца	С	В	H	kr
ЗПП-50×210	50×21	370	540	580	72
ЗПП-50×350 (K1)	50×35	370	540	580	73
ЗМС-50×700М	50×70	500	355	870	157
ЗМАД-50×700 (K2)	50×70	500	355	980	196
3M-65×21	65×21	350	320	665	66
3MC1-65×21 K1		350	320	660	88
3MC-65×35	65×35	350	320	630	88
3MC1-65×35 (K1, K2)		390	320	780	127
3MC1-65∏×35 (K2)		390	400	1145	220
3MC1-65A×35		1000	350	695	180
ЗМАД-65×700 (К1)	65×70	570	500	1100	258
ЗМАДП-65×700 (К2)		570	420	1240	360
3MC1-80×21	80×21	435	360	910	120
3MC1-80∏×21		435	490	1135	184
3MC1-80×35 (K2)	80×35	480	360	910	130
3MC1-80∏×35		480	490	1135	195
3MC1-80∏×35 K2		470	400	1180	27 0
ЗМАД-80×700М	80×70	650	500	1170	330
ЗМАД-80×700 К2		650	500	1170	330
ЗМАДП-80×700М		650	420	1300	465
ЗМС1-100×21 (К2, К2И)	100×21	510	450	1150	280
ЗМС1-100П×21 (К2, К2И)		510	295	1320	305
ЗМС1-100А×21 (К2, К2И)		510	295	1320	325

Шифр	Шифр	Длина	Ширина	Высота	Масса,
	фланца	<i>L</i>	<i>В</i>	<i>Н</i>	кг
3MC-100×35 (К1)	100×35	550	450	1130	290
3MC1-100×35 (К2, К2И)		550	450	1130	300
3MC1-100П×35		550	295	1320	320
3MC1-100П×35 К2		550	450	1400	405
3MC1-100A×35		550	295	1320	345
3MCB-150×21	180×21	350	450	1 485	355
3MCB-150∏×21		490	380	1 57 0	403

Примечания. 1. Конструкцию ем на рис 11.10 2. Скобки означают, что ФА наготавливают как в обычном исполнении, так и в указанном коррозионноетойком 3 Размеры в мм

материалы, применяемые при эксплуатации пво и фа

Смазки для задвижек ЛЗ-162 (ТУ 38-101315—77) и Арматол-238 (ТУ 38-101812—83).

Жидкость гидравлическая марки 132-10 для системы управления ГУП-100Бр (ГОСТ 18613—73).

Этиленгликоль для системы управления ППВО (ГОСТ 19710—83).

Масло растворимое КГЖ для системы управления ППВО ТУ 38УССР-201372—81.

11.8. ЛИКВИДАЦИЯ ГАЗОНЕФТЕВОДОПРОЯВЛЕНИЙ

ПРАВИЛА ЛИКВИДАЦИИ

Для успешной ликвидации проявления необходимо строго соблюдать некоторые правила. Несоблюдение может привести к усложнению работ по ликвидации проявления или даже к открытому фонтану.

- I. При малейшем подозрении на начало проявления необходимо при бурении прекратить циркуляцию или приостановить работы по спуско-подъему инструмента и убедиться в отсутствии перелива промывочной жидкости из скважины. Практика бурения глубоких скважин показала, что если это подозрение и окажется ложным, то лучше принять дополнительные меры предосторожности, чем получить открытый фонтан.
- II. Если проявление обнаружено в процессе бурения, расширения, проработки или призабойной промывки, то устье необходимо загерметизировать и приступить к вымыву поступившего флюида.

Если проявление обнаружено в процессе подъема инструмента, необходимо после навинчивания обратного клапана и герметизации устья спустить инструмент на возможно большую глубину,

снизив давление в системе управления универсальным превентором до 3-4 МПа. При глубине скважины более 2000 м можно спускать инструмент при открытом устье до момента получения притока 2—2,5 м³, после чего устье необходимо загерметизировать и продолжить спуск. По мере спуска возрастающее давление в затрубном пространстве необходимо снижать через дроссель.

III. После герметизации устья необходимо через 3—5 мин снять показания давлений на манометрах в трубном и затрубном пространствах. Надо учитывать, что из-за структурных свойств промывочной жидкости показания манометра, установленного на бурильных трубах, могут быть несколько завышенными. Для получения истинной величины надо 2-3 раза кратковременно приоткрыть дроссель.

IV. Если в течение 15 мин после герметизации устья скважины давления в трубном и затрубном пространствах стабильны или очень медленно растут — это означает, что в ствол поступила вода или нефть (может быть даже содержащая большое количество растворенного газа); если давления продолжают быстро расти (в трубном пространстве давление будет несколько ниже, чем в затрубном) — в интервале 500—1200 м начал расширяться газ, находившийся ранее в свободном или растворенном виде, и подниматься к устью. Расширение газа на этих глубинах очень скоротечно и опорожнение приустьевой части ствола до 500 м происходит за 3—5 мин. В загерметизированной скважине или на больших глубинах подъем газа за счет давления среды и тиксотропных свойств промывочной жидкости происходит со скоростью 30—300 м/ч.

Необходимо также учитывать, что в глубоких скважинах в процессе промывки понижается средняя температура по стволу, т. е. после герметизации устья за счет прогрева промывочной жидкости будет наблюдаться рост давлений в трубном и затрубном пространствах.

Поэтому необходимо как можно быстрее вымыть поступивший флюид из затрубного пространства. В процессе вымыва четко определяются интервал нахождения флюида, его тип и объем, после чего корректируют величину доутяжеления промывочной жидкости.

V. Подача насоса (бурового или цементировочного) при вымыве флюида и глушении скважины должна быть 0,4-0,5 от интенсивности промывки при бурении. Низкая подача раствора при закачке позволяет своевременно реагировать на все отклонения от расчетного режима, более спокойно оценивать обстановку и тем самым не допускать грубых ошибок. Немаловажный фактор — резкое снижение давлений на насосе и в затрубном пространстве, так как давление пропорционально квадрату интенсивности промывки.

VI. В начале каждого рейса с использованием новой компоновки или через каждые 200 м углубления ствола с постоянной компоновкой необходимо определять общие потери давления при прокачке промывочной жидкости через линию дросселирования при закрытом превенторе. Интенсивность прокачки должна имитировать процесс глушения. При подводном расположении ПВО длина линий глушения и дросселирования очень значительная, потери давления в этих линиях достигают 5 МПа. Пренебрежение этими давлениями может привести к большим ошибкам в расчете режима глушения, а это, в свою очередь, — к гидроразрыву пород.

VII. Перед началом глушения скважины объем утяжеленного или вновь приготовленного раствора должен быть не менее 1.3—1.5 от объема скважины.

метод бурильщика

1. Скважина бурится на суще, с МСП или СПБУ.

Так как глушение скважины осуществляется в два этапа (вымыв флюида, а затем непосредственно глушение закачкой в скважину утяжеленной до расчетной величины промывочной жидкости), этот метод известен в литературе еще как двухстадийный. Название метода обусловлено тем, что с его помощью бурильщик обязан самостоятельно ликвидировать проявление, не прибегая к сложным расчетам. Преимущество метода — простота использования при минимальных знаниях бурового персонала. Недостаток — необходима большая надежность в работоспособности бурового оборудования на протяжении всего цикла работ по ликвидации проявления. Метод применяют при близком расположении долота к забою. Сразу же после определения давлений в бурильной колонне и затрубном пространстве приступают к вымыву флюида из скважины.

На рис. 11.18, а приведены классические диаграммы давлений при вымыве з а б о й н о й газовой пачки и глушении скважины с характерными точками. Участок I'-I— запуск насоса до выхода его на заданную интенсивность промывки, т. е. точка а обозначает начало открытия дросселя. При заданной (выбранной бурильщиком) постоянной производительности промывки давление в бурильных трубах $p_{6.\ T}$ необходимо поддерживать п о с т оя и н ы м до полного вымыва флюида из скважины: это постоянство давления регулируется закрытием или открытием дросселя на блоке дросселирования (участок I-2). Величина давления в бурильных трубах до полного вымыва флюида определяется по формуле

$$p_{6} = p_{np} + \Delta p_{6. T} + 0.5,$$

где $p_{\rm пp}$ — потери давления во всей системе от насоса до выкида линии дросселирования при промывке на выбранной производительности глушения (определяют опытным путем заранее), МПа; $\Delta p_{\rm 6\ r}$ — давление в бурильных трубах после герметизации устья, МПа; 0,5 — запас на противодавление, МПа.

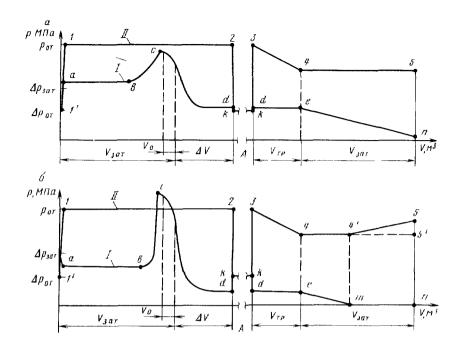
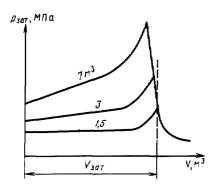


Рис. 11.18. Кривые давлений при глушении скважины методом бурильщика: a — при бурении скважин на суше; b — при бурении скважин с БС или ППБУ; b — в ватрубном пространстве; b — в трубаж


При отсутствии величины $p_{\rm np}$ начальное давление в бурильных трубах $p_{\rm 5.\,T}$ можно определить кратковременной прокачкой (2—3 мин) промывочной жидкости через линию дросселирования при поддержании в затрубном пространстве постоянного давления ($\Delta p_{\rm 3aT} + 0.5$) МПа, где $\Delta p_{\rm 3aT}$ — давление в затрубном пространстве после герметизации устья.

Плотность промывочной жидкости в течение всего процесса вымыва флюида не меняется.

Динамика изменения давления в затрубном пространстве при вымыве газа показана кривой *I*. Абсолютная величина давления в затрубном пространстве зависит от объема газа, поступившего в скважину (рис. 11.19), но в случае значительного превышения над давлением в бурильных трубах происходит перераспределение давлений. В этом случае давление в бурильных трубах начнет расти, и чтобы удержать его на прежнем (более низком) уровне, необходимо уменьшить подачу раствора при промывке. Аналогично необходимо поступить, если давление в затрубном пространстве начнет приближаться к предельно допустимому из условия прочности обсадных труб в приустьевой части или пород в открытой части ствола. Точка *b* (см. рис. 11.18, *a*) — начало

расширения газа в затрубном пространстве (интервал 300—1200 м). Точка c — начало выхода газа через дроссель; оно может несколько опережать начало выхода расчетной пачки притока V_0 , полученного до герметизации устья. Если произошло резкое смещение точки c влево от расчетного положения — вымывается не забойная, а поднятая потоком промывочной жидкости пачка газа (доутяжеление будет незначительным).

 $\Phi_{\text{ЛЮИД}}$ считается вымытым, когда давление на дросселе стабилизируется и станет равным величине ($\Delta p_{6.T} + 0.5$) МПа, а при

Гис. 11.19. Зависимость давления в ватрубном пространстве от объема газа, поступившего в ствол скважины

прекращении циркуляции давления в трубном и затрубном пространствах должны быть одинаковыми и равными $\Delta p_{6,\,\mathrm{T}}$ (точка k участка A). Если нет равновесия, то это означает, что в ствол скважины поступила новая порция газа или газ поступал в течение всего процесса промывки. В этом случае необходимо промыть скважину заново, увеличив давление $p_{6,\,\mathrm{T}}$.

Дополнигельный объем закачанной промывочной жидкости ΔV (см. рис. 11.18, a) обусловлен возможными ошибками в расчетах, незчанием точного объема скважины в необсаженном интервале, а также проскальзыванием слоев промывочной жидкости в зоне каверн, возможным образованием зон застоя и т. п. Практика глушения проявлений показала, что

$$\Delta V = (0.3 \div 1) V_{aar}$$

В процессе промывки (вымыва газа) буровая бригада утяжеляет необходимый объем промывочной жидкости до расчетной величины (r/cm^3)

$$\rho_{\rm R} = k \, (\rho_{\rm M} + 100 \, \Delta p_{\rm 6. T}/L_{\rm crb}),$$

где k — коэффициент безопасности согласно п. 8.2 ЕТП; $\rho_{\rm ж}$ — плотность промывочной жидкости в скважине до начала проявления, г/см³; $L_{\rm скв}$ — глубина скважины (проявляющего горизонта), м.

Величину доутяжеления можно определить по номограмме (рис 11.20). После доутяжеления промывочной жидкости в не264

обходимом объеме приступают ко второму этапу — непосредственно глушению.

В бурильные трубы закачивают объем утяжеленного раствора, равный внутреннему объему бурильных труб. Если есть сомнение в правильности подсчета, то закачивают объем на 0,5—1 м³ больше расчегного. Закачиваемый объем строго контролируют по мерной емкости. В процессе всего периода закачки указанного объема

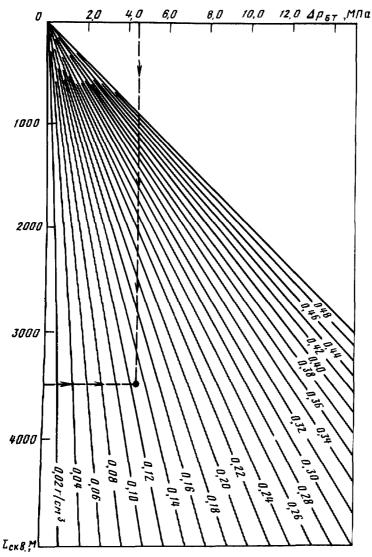


Рис. 11.20. Номограмма для определения необходимой величины доутяжеления раствора

давление в затрубном пространстве поддерживается постоянным (участок de). Давление в бурильных трубах будет снижаться и к концу закачки достигнет некоторой величины (точка 4). Если продолжать закачивать утяжеленную промывочную жидкость в бурильные трубы, то давление на насосе начнет повышаться. После выхода утяжеленной промывочной жидкости из-под долота дальнейшую закачку необходимо производить при постоянно м давлении в бурильных трубах (участок 4-5). При этом давление в затрубном пространстве к концу закачки должно снизиться практически до нуля. После выхода утяжеленной промывочной жидкости через дроссель необходимо открыть превентор и убедиться, что скважина заглушена.

2. Скважина бурится с БС или ППБУ.

Порядок действий бурильщика при вымыве флюида и глушении скважины, а также расчет величины доутяжеления промывочной жидкости аналогичны, как и при ликвидации проявления на скважинах, бурящихся на суше. Однако при подводном расположении устья за счет больших потерь давления в линии дросселирования давление начала промывки $p_{6.\,\,\mathrm{T}}$ определяют иначе, чем указано выше.

Пробную прокачку промывочной жидкости с подачей, имитирующей процесс глушения, производят при открытом превенторе через водоотделяющую колонну (райзер, морской стояк), а также при закрытом превенторе через линию дросселирования. Замеряют значения потерь давления соответственно через райзер ($p_{\text{райз}}$) и линию дросселирования ($p_{\pi. \, \pi}$). После герметизации устья скважины и определения избыточных давлений в бурильных трубах ($\Delta p_{\text{б. \, T}}$) и в затрубном пространстве ($\Delta p_{\text{зат}}$) начальное давление на насосе при вымыве флюида $p_{\text{б. \, T}}$ должно составлять

$$p_{6. \text{ T}} = p_{\text{pahs}} + \Delta p_{6. \text{ T}} + 0.5 \gg p_{\text{M. H}}.$$

Если потери давления в процессе прокачки при выбранной подаче насосов $p_{\pi.\,\pi}$ будут выше расчетного необходимого давления $p_{6.\,\tau}$, то при вымыве флюида давление на насосе не может быть ниже величины $p_{\pi.\,\pi}$, хотя дроссель будет полностью открыт. Если величина $p_{\pi.\,\pi}$ значительно ниже допустимого давления из условия прочности обсадных труб в приустьевой части, то вымыв газа можно осуществлять при поддержании в бурильных трубах давления $p_{\pi.\,\pi}$ (в начале циркуляции дроссель будет полностью открыт).

Диаграмма давлений в трубном и затрубном пространствах при ликвидации проявления на скважине с подводным расположением ОП приведена на рис. 11.18, б. Характерной особенностью является то, что дроссель необходимо открывать одновременно с пуском насоса, и давление перед ним будет ниже величины $\Delta p_{\rm sat}$. Если потери давления в линии дросселирования превышают значение $\Delta p_{\rm 6.\, T}$, то к концу процесса вымыва флюида дроссель будет

полностью открыт, а на пласт будет передаваться дополнительное давление $(p_{\pi,\pi} - p_{\text{paß}}) - \Delta p_{6,\pi}$.

При подводном расположении устья кривая роста давлений перед выходом газа через дроссель (участок bc) будет значительно круче, а максимальное давление на дросселе при выходе газа (точка c) не должно значительно превышать давления в бурильных трубах.

В некоторый момент закачки утяжеленной промывочной жидкости для поддержания постоянного давления в бурильных трубах дроссель будет полностью открыт (точка m). Если продолжать закачку при прежней подаче насоса, то давление в бурильных трубах будет повышаться (участок 4'-5). Во избежание этого требуется уменьшить подачу насоса либо открыть задвижку на линии глушения. Поэтому необходимо учитывать, что к концу закачки утяжеленной промывочной жидкости в скважину (точка n) будет существовать противодавление на пласт несмотря на полностью открытый дроссель.

12. СПУСКО-ПОДЪЕМНОЕ ОБОРУДОВАНИЕ И ПРИНАДЛЕЖНОСТИ

12.1. КАНАТЫ СТАЛЬНЫЕ

Канаты стальные различают:

по конструкции: ТК, ЛК — точечное и линейное касание проволок между слоями соответственно; ТЛК — точечно-линейное касание проволок между слоями; О, Р — пряди состоят из проволок одинакового и разного диаметров; РО — прядь состоит из проволок разного и одинакового диаметров в слоях;

по назначению: ГЛ — грузолюдские, Г — грузовые;

по механическим свойствам проволоки: В — высшей марки, 1 — первой марки;

по условиям работы: ОЖ, Ж, С — соответственно особо жесткие, жесткие и средние агрессивные условия работы;

по сочетанию направлений свивки: О — односторонняя, К — комбинированная, без обозначения — крестовая;

по способу свивки: Н — нераскручивающийся, Р — раскручивающийся.

Для буровых установок применяют канат правой крестовой свивки, нераскручивающийся, с органическим сердечником для любых условий работы. Обозначение при заявке: канат (диаметр) — Γ — (механические свойства проволоки) — H — (маркировочная группа) — (номер Γ OCTa).

Характеристики стальных канатов с органическим сердечни-ком (рис. 12.1) приведены в табл. 12.1.

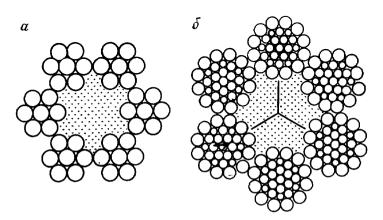


Рис. 12.1. Канат стальной с органическим сердечником:

Диаметр каната,	Тип и конструкция	гост	Macea 1000 m.	Разрывное усилне кана- та (кН) при маркиро- вочной группе, МПа			
мм	IIII H ROBESPYKAAN	1001	KP	1470	1568	1666	1764
12,5	лк-0 (6×7)	3069—80	562	74	7 9	84	88
14,5	ЛК-О (6×7) ТК (6×7)	3069—80 3070—74	745 715	98 —	105 99	111 105	116 108
15,5	ЛК-О (6×7) ТК (6×37) ТЛК-О (6×37)	3069—80 3071—74 3079—80	848 83 5 85 2	112 —	119 110 113	126 117 121	132 120 124
17,0	ТЛК-О (6×37)	3079—80	1065		142	151	155
19,5	ЛҚ-О (6×19) ЛҚ-Р (6×19) ТҚ (6×19) ЛҚ-О (6×7) ТЛҚ-О (6×37)	3077—80 2688—80 3070—74 3069—80 3079—80	1370 1405 1275 1335 1350	174 179 — 177 169	183 191 173 189 180	197 203 184 201 191	230 209 190 208 197
21,5	ТЛК-О (6×37)	3079—80	1670	208	222	237	244
22,5	ЛК-Р (6×19) ТК (6×19) ТК (6×37)	2688—80 3070—74 3071—74	1850 1735 1705	235 — —	251 240 229	267 255 243	275 263 249
28,0 32,0 35,0 38,0	ЛК-РО (6×31) ЛК-РО (6×31) ЛК-РО (6×31) ЛК-РО (6×31)	16853—71 16853—71 16853—71 16853—71	3000 3800 4640 5450		440 547 659 782	468 581 700 830	495 615 741 879

Примечание. Канаты талевые по ГОСТ 16853—88 поставляются в бухтах дливой 1000, 1200 и 1500 м.

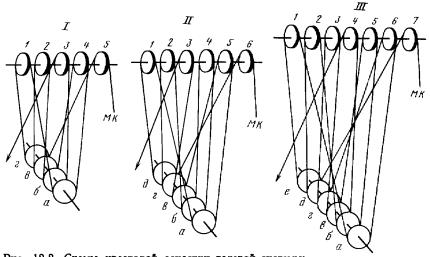


Рис. 12.2. Схемы крестовой оснастки талевой системы: 1, 11, 111 — оснастки 4×5 $(5-\varepsilon-1-a-4-e-2-6-3)$, 5×6 $(6-\partial-1-a-5-\varepsilon-2-6-4-e-3)$ и 6×7 $(7-e-1-a-6-\partial-2-6-5-\varepsilon-3-e-4)$

12.2. ОТРАБОТКА ТАЛЕВЫХ КАНАТОВ

При эксплуатации талевых канатов их износ между I и III роликами талевого блока — наибольший вследствие более частого огибания роликов под нагрузкой во время спуско-подъемных операций. Поэтому для увеличения срока службы каната его надо периодически перетягивать, сдвигая участок из зоны наибольших нагрузок в менее нагруженную зону. Этим достигается более равномерный износ каната по всей длине. На практике применяется несколько вариантов перетяжки, предложенных институтом «Гипронефтемаш» (табл. 12.2).

Таблина 12.2

_	Варнанты				
Показатель	r	11	III		
Наработка до первой перетяжки, т.км Длина перепускаемого отрезка, м Наработка до второй (очередной) перетяжки, т.км Снижение наработки для каждой очередной перетяжки, т.км	3100 55 3000 100	5000 80 4000 —	15 000 100* 10 000		

Примечание. Звездочка означает, что длина перепуска в третий раз составляет 300 м.

Наработку талевого каната A (т \cdot км) за рейс определяют по показанию счетчика работы каната, а при его отсутствии — по графику (рис. 12.3). Среднюю массу 1 м инструмента $q_{\rm cp}$ (кг) определяют по показанию индикатора веса при установившейся скорости подъема первой свечи или по формуле

$$q_{\rm cp} = (G_{\rm d, r} + 1, 15G_{\rm d, r})/\eta L_{\rm d, r},$$

где $G_{0\pi}$ — масса талевого блока, крюкоблока, элеватора и т. п., кг; $G_{0.\, \text{T}}$ — масса бурильной компоновки (кг), поднимаемой с глубины $L_{0.\, \text{T}}$, м; η — кпд талевой системы, $\eta = 0.9 \div 0.93$; 1.15 — коэффициент увеличения нагрузки (массы) за счет сил сопротивления при подъеме в вертикальной скважине.

При бурении наклонных скважин с большим градиентом набора кривизны силы сопротивления соразмерны с массой поднимаемых труб, поэтому величину $q_{\rm cp}$ необходимо устанавливать по показанию индикатора веса при подъеме первой свечи.

На графике из точки $L_{\tt CRB}=L_{\tt 6.\,\,T}$ проводится горизонтальная прямая до пересечения с соответствующей кривой $q_{\tt cp}$, из точки пересечения восстанавливается перпендикуляр и определяется работа A каната за рейс.

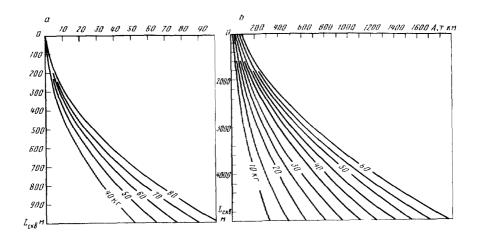


Рис. 12.3. График наработки талевого каната за 1 рейс: a, δ — глубина скважини соответственно до 1000 и до 5000 м

При спуске обсадных колонн одной секцией

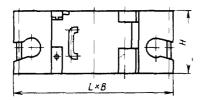
$$q_{\mathrm{cp}} = 0.5 \, \frac{G_{\mathrm{\delta\pi}} + G_{\mathrm{o}\,\mathrm{5c}}}{\eta L_{\mathrm{crb}}}$$
,

где $G_{
m oбc}$ — масса епущенных обсадных труб (кг) на глубину $L_{
m ckB}$, м.

При спуске обсадных колонн секциями на бурильных трубах наработку талевого каната рассчитывают отдельно соответственно для спуска секции и подъема бурильных труб после их отвинчивания:

$$q_{\text{cp. cm}} = 0.5 \frac{G_{6\pi} + G_{6.T} + G_{06c}}{\eta L_{\text{chB}}},$$

$$q_{\text{cp. m}} = 0.5 \frac{G_{6\pi} + G_{6.T}}{\eta L_{6.T}}.$$


Учет наработки талевого каната ведется с нарастающим итогом по каждому рейсу. При соблюдении требований по эксплуатации талевого каната наработка до полного износа бухты длиной 1500 м достигает 65 000—70 000 т · км.

12.3. ЭЛЕВАТОРЫ И СПАЙДЕРЫ

Нормальный ряд элеваторов и спайдеров по грузоподъемности (СТ СЭВ 3187—81), кН: 40, 63, 100, 200, 320, 500, 800, 1000, 1250, 1400, 1700, 2000, 2500, 3200, 4000, 4500.

элеваторы для бурильных и обсадных труб

TY 26-16-132-81, TY 26 02 258-77, TY 26 02 933 -82

 ${
m Puc.}\ 12.4.$ Элеватор корпусной

Таблица 12.3

140лица 12.5	,	,	,	· · · · · · · · · · · · · · · · · · ·		
Швфр	Дигметр труб, мм	Грузо- подъем- ность, кН	Длина L , мм	Ширина В, мм	Высота Н, мм	Macca, kr
KM 60-125 KM 73-125 KM 89-125 KM 89-200 KM 102-125 KM 102-200 KM 114-140 KM 114-150 KM 114-17-250 KM 127-140 KM 127-140 KM 127-140 KM 127-140 KM 127-140 KM 127-140 KM 127-140 KM 127-140 KM 127-150 KM 127-170 KM 129-140 KM 140-170 KM 140-170 KM 140-320 KM 146-170 KM 146-320 KM 146-320 KM 168-170 KM 178-170 KM 178-320 9H 194-125 KM 194-320 9H 219-125 KM 219-320 9H 245-125 KM 273-320 9H 273-125 KM 273-320 9H 299-125 KM 299-320 9H 324-125 KM 324-320 KM 340-320 9H 351-125 KM 340-320 9H 351-125 KM 351-320 9H 377-125	60 73 89 89 102 102 114 114 114 117 127 127 127 127 127 140 146 146 168 168 178 178 178 194 194 219 219 245 245 273 273 299 324 324 340 351 351 377	1250 1250 1250 2000 1250 2000 1400 2500 2500 1400 1700 3200 1700 3200 1700 3200 1700 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250 3200 1250	610 610 610 645 710 645 710 670 760 670 760 670 755 800 785 800 785 800 780 800 780 800 940 850 940 850 965 850 995 990 1035 900 1020 1070 1120 1170 1165	225 225 225 225 225 255 2255 2255 2300 320 320 320 320 320 320 340 355 340 355 360 355 360 355 360 340 400 410 435 440 435 470 475 500 475 510 530 510 560	250 250 250 250 310 250 310 260 320 260 260 320 260 290 350 290 350 290 350 290 350 365 350 365 350 365 350 365 350 365 350 365 350 365 350 365 350 365 350 365 350 365	67 63 82 121 78 117 94 155 152 89 86 149 144 89 131 193 128 189 134 177 129 171 180 261 220 237 235 295 265 340 290 310 363 325 354

Продолжение табл. 12.3

Шнфр	Диаметр труб, мм	Грузо- подъем- ность, кН	Длина <i>L</i> , мм	Ширина <i>В</i> , мм	Высота <i>Н</i> , мм	Масса, кр
КМ 377-320	377	320 0	1100	535	350	395
ЭН 426-125	426	1250	1195	600	365	388
ЭН 478-80	478	800	1245	650	365	365

Примечание $H\Pi$ — трубы с приварными замками и высаженными наружу концами, J — трубы из алюминиевых плавов.

элеваторы корпусные для бурильных и обсадных труб

ТУ 26-02-945--82

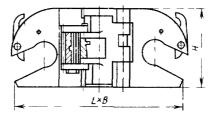


Рис. 12.5. Элеватор корпусной типа ЭК

Таблица 12.4

Шнфр	Диаметр труб, мм	Грузо- подъем- ность, кН	Длина Длина Д, мм	Ширина В, мм	Высота Н, мм	Масса, кг
ЭК 114-250	114	2500	760	280	320	140
ЭК 114НП-250	114 НП	2500	760	280	320	138
ЭК 127-250	127	2500	760	280	320	135
ЭК 127НП-250	127 НП	2500	760	280	320	131
ЭК 194-170	194	1700	854	360	300	170
ЭК 219-170	219	1700	854	360	300	160
ЭК 245-170	245	1700	880	335	300	175
ЭК 273-170	273	1700	910	415	300	185
ЭK 299-170	299	1700	980	485	300	255
ЭK 324 170	324	1700	980	485	300	230
ЭК 340-170	340	1700	1070	510	350	320
ЭК 351-170	351	1700	1070	510	350	300
ЭК 377-170	377	1700	1140	605	350	430
ЭК 407-170	407	1700	1140	605	350	420
ЭК 426-170	426	1700	1140	605	350	405
	1 1	1 1		i l		I

Примечание. Гарантийный ресурс работы 180 ч.

элеваторы для нкт

OCT 26-16-1626-84, TV 26-16-87-79, TV 26-16-157-83

Таблица 12.5

Шифр Диаметр труб, мм		Грузо- подъем- ность, кН	Длина <i>L</i> , мм	Ширина <i>В</i> , мм	Высота <i>Н</i> , мм	Мас- са, кр
	Одноштро	пные (ри	c. 12.6,	a)		
ЭТАР-12,5 ЭТАР-20 ЭТА-32 ЭТА-50 ЭГ-89	33, 42, 48 48, 60, 73 48, 60, 73 60, 73, 89 89	125 200 320 500 800	190 250 265 280 225	230 260 200 230 250	565 565 540 575 540	14 30 21 28 32
	Двухштро	пные (рис	c. 12.6, <i>σ</i>)		
ЭТАД-50 ЭТАД-80	60, 73, 89 73, 89, 102,	500 800	440 510	260 290	175 220	37 58
ЭТАД-125	73, 89, 102, 114	1250	610	320	, 250	85

Примечания. 1 В заказе необходимо указывать диаметр захвата (труб). 2. Гарантийный срок работы 600 ч или 6000 циклов.

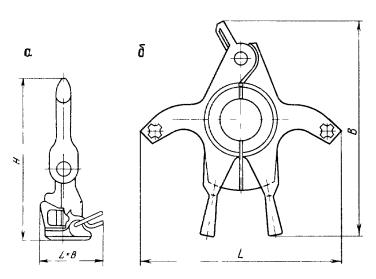


Рис. 12.6, Элеватор для НКТ: **а.** 6 — одно- и двухштропный 274

ЭЛЕВАТОР-СПАЙДЕР С КЛИНОВЫМ ЗАХВАТОМ

ТУ 26-02-519-84

Таблица 12.6

Шифр	Диаметр труб, мм	Грузо- подъем- ность, т.Н	Длина, мм	Шири- га, мм	Высо- та, мм	Мас- са, кр
ЭОК 114-194	114, 127, 140, 146, 168, 178, 194	2500	1010	1010	915	945
ЭОК 178-351	178, 194, 219, 245, 273, 299, 324, 340, 351	3200	1110	1075	920	1430

ЗАХВАТ КЛИНОВОЙ ПНЕВМАТИЧЕСКИЙ

TY 26-02-542-74, TY 26-02-4-87, TY 26-02-1027-86

Таблица 12.7

Шифр	Диаметр за- кватываемых труб, мм	Грузо- подъем- ность, кН	Длина, мм	Шири- на, мм	Высо- та, мм	Mac- ca, KF
ПҚР-560	73, 89, 114, 127, 140, 147, 168	3200	1500	820	1490	1915
ПКРО-560М	194, 219, 245, 273, 299, 324	4000	750	750	1530	1560
ПКРБО-560 ПКРБО-700	60—340 60—508	3200 4000	1700 1700	900 950	1650 1650	2410 2690

Примечания. 1. Наработка на плашки 400 ч. 2. Захваты ПКРБО выпускаются с ручным (ОР) или механизированным (ОМ) отводом привода.

КЛИНЬЯ ДЛЯ БУРИЛЬНЫХ ТРУБ

ТУ 26-02-813---78

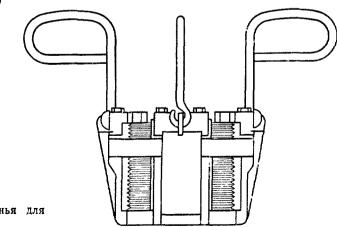


Рис. 12.7. Клинья для бурильных труб

10*

275

Таблица 12.8

Шнфр	Диаметр труб, мм	Допустимая нагрузка, кН	Масса, кг
КТБ-114	114	1175	43
KTE-127	127	1175	38
КТБ-140	140	1175	42
КТБ-168	168	1175	53
КТБУ-146	146	310	32
КТБУ-178	178	310	28
КТБУ-203	203	310	25
Примечание. Д	иаметр клиньев 325 мм.	высота 390 мм.	

ШТРОПЫ БУРИЛЬНЫЕ

СТ СЭВ 2451—80, ТУ 26-02-442—72, ТУ 26-02-998—85

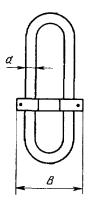


Рис. 12.8, Штропы бурильные

Таблица 12.9

Щифр	Грузо- подъем- ность, кН	d, mm	Длина, мм	Ширина <i>В</i> , мм	Масса, пары, кг
РИ-Э/10 ШЭ-28 ШЭ-32 ШЭ-50 ШЭ-80	100 280 320 500 800	30 35 40 45 60	920 850 850 890 975	210 220 225 240 485	22 29 37 48 120
ШБД-125	1250	75	1050 1100 1200 1500 1800	520 520 520 520 520 520	165 170 185 230 270
ШБД-200	2000	85	1100 1500 1800 2100 2400	570 570 570 570 570	220 295 350 400 455
ШБД-320	3200	90	1800 1850 2100 2400 2700	570 570 570 570 570	385 400 450 510 570

Примечания. 1. В заказе указывают длину штропов. 2. Срок службы 3 г.

12.4. КЛЮЧИ

КЛЮЧИ АВТОМАТИЧЕСКИЕ

ТУ 26-02-28-79, ТУ 26-02-1011-85

Таблица 12.10

Шифр	Диаметр свинчивае- мых труб, мм	Момент при свинчива- нии, кН-м	Длина, мм	Шири- на, мм	Высота, мм	Масса, кр
АКБ-ЗМ2	108—216	1,2—50,0	165 5	1015	2400	3000
АКБУ	60—340	2,0—70,0	2070	1160	4600	4100

Примечание. Гарантийный срок службы 10 000 циклов свинчивания или развинчивания.

КЛЮЧИ МАШИННЫЕ ПОДВЕСНЫЕ

TY 26-02-673--75, TY 26-02-842--79, TY 26-02-35--75, TY 26-02-779--77

Шифр	БУ 73 —89	ΚГП	КМБ 108-212	YMK-IC
Диаметр труб, мм	73—89	73—108	108-212	108-212
Размеры, мм:				
длина	1250	1370	1560	1590
ширина	360	700	590	570
высота	860	560	1040	1120
Момент свинчивания, кН м	30.5	30,0	80,0	65,0
Масса, кг.,,,,,,,	74	300	225	147

Примечание. Гарантийный срок работы 500 ч или 6000 циклов.

КЛЮЧИ МАШИННЫЕ ПОДВЕСНЫЕ ДЛЯ ОБСАДНЫХ ТРУБ

ТУ 26-02-779---77

Таблица 12.11

Шифр	Диаметр труб, мм	Длина, мм	Ширина, мм	Момент свинчи- вания,	Macca,
OMH-146/166 OMH-168/188 OMH-194/216 OMH-219/245 OMH-245/270 OMH-279/3299 OMH-299/324 OMH-324/351	146; 166 168; 188 194; 216 219; 245 245; 270 273, 299 299; 324 324; 351	1420 1445 1485 1510 1555 1560 1580 1615	360 370 380 410 430 440 470 500	8,5 8,5 8,8 8,9 9,0 9,1 9,2 9,3	80 89 93 97 105 111 117
OMH-324/351 OMH-351/376 OMH-377/402 OMH-426/451 OMH-478 OMH-530	351; 376 377; 402 426; 451 478 530	1650 1670 1750 1800 1850	520 540 600 660 720	9,4 9,5 9,7 10,0 10,1	128 128 145 153 160

Примечание. Высота ключей с учетом рукоятки для подвески 840 мм.

ключи цепные

ТУ 26-02-355---76

Шифр	КЦО-1 КЦН-1 КЦН-2 КЦН 3
Диаметр труб, мм	60-114 60-114 114-146 146-245
Длина цеги, мм	667 667 928 1377
Размеры, мм:	
длина	660 1160 1570 2100
ширина	100 100 112 152
высота	110 110 135 165
Macca, Kr	11 14 24 53

КЛЮЧИ ТРУБНЫЕ ДЛЯ НКТ

TY 26-02-484-73, TY 26-02-170-79, TY 26-02-1039-87, TY 26-16-101-79

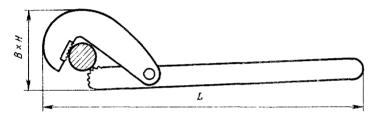


Рис. 12.9. Ключ трубный для НКТ

Таблица 12.12

Пафр	Диаметр труб	Дли- на L	Ши- рина В	Высота Н	Развиваемый мочент, кН·м	Мас- са, кг
КТГУ-M-48 КСМ-48 КТНД 48-89 КТГУ-60 КТГУ-M-60 КСМ-60 КТГУ-73 КТГУ-73 КТГУ-73 КТГУ-89 КТГУ-89 КТГУ-M-89 КСМ-89 КТГУ-M-89 КСМ-89 КТНД 89-132 РИК-95 КСМ-114	48 48; 63,5 48—89 60 60; 78 73 73, 98 89 89 89; 114 89—132 95 114; 141	350 205 650 360 330 205 375 345 240 415 380 265 850 1400 275	140 180 128 150 140 195 160 155 210 185 190 230 180 172 255	40 137 120 46 58 137 55 67 139 55 67 154 120 90 154	2,5 2,0 2,5 2,5 2,4 3,5 2,5 4,5 3,4 0,0 3,4 3,4 0,0 3,4 3,4 0,0 3,4 3,4 0,5 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4	358445555977100111

Примечания. 1. Размеры в ми 2. Ключи КСМ и КТГУ-М для механизированного свинчивания и развинчивания НКТ. 3 Гаралтийный ресурс работы ключей КСМ и КТГУ — 500 ч, КГН $\mathcal L$ и РИК — 360 ч, КТГУ-М — 2500 ч.

КЛЮЧИ ШАРНИРНЫЕ ДЛЯ БУРИЛЬНЫХ ГЕОЛОГОРАЗВЕДОЧНЫХ ТРУБ

ΓΟCT 6494--71

Шифр (диаметр трубы, мм)	33,5	42,0	50,0	60,3	63,5
Размеры, мм:	w	# 00			
длина <i>L</i>	510	529	557	585	585
ширина В	100	125	162	185	190
высота H		46	46	46	46
Крутящий момент, Н.м	1200	1500	2100	2400	2400
Macca, Kr					

КЛЮЧИ ШАРНИРНЫЕ

ΓΟCT 10465-74 E, TY 34-2216-75, TY 41-01-453-86

Таблица 12.13

Шафр	Диаметр Труб, мм	Дли- на <i>L</i> , мм	Шн- рина В, мм	Высота <i>Н</i> , мм	Қрутящий момент, Н∙м	Mac- ca, ky
KK 36 KK 46 KIII-46 KK 59 KIII-59 KK 76 KIII-76 73/89 KK 93 KIII-93 108/127 KK 112 KK 132 146 KK 151 168/188 219/243	34,5 44,5 38—44 57,5 48—60 74 63—74 73; 89 91 83—91 108; 127 110 130 146 149 168; 188 219; 243	440 450 610 465 610 485 626 500 610 643 450 626 745 450 770 620 620	85 95 115 108 142 130 168 190 150 188 240 176 199 256 218 316 374	29 29 34 29 34 64 35 34 64 35 64 35 76	800 800 2000 800 3000 -800 3000 1950 1200 3000 2200 1200 1200 2500 1200 2900 3400	1 2 3 2 4 3 4 5 4 4 6 4 5 7 5 13 14

Примечание. Конструкцию см. на рис. 12.10.

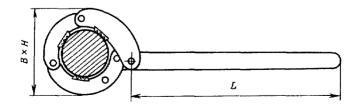


Рис. 12,10. Ключ шарнирный

12.5. БЛОКИ

ШКИВЫ ТАЛЕВЫХ МЕХАНИЗМОВ

Таблица 12.14

4	Диа	иметр, мм	
Шифр	каната	шкива (наружный)	Масса, к
Шк-800-25 Шк-900-28 Шк-1000-32 Шк-1130-32 Шк-1285-35 Шк-1365-38	25 28 32 32 35 38	900 1000 1120 1250 1400 1500	120 150 250 310 390 430

КРЮКОБЛОКИ

OCT 26-16-1607-79, TY 24-00-1931-80

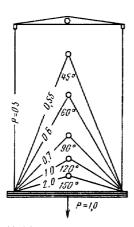


Рис. 12.11. Зависимость нагрузки P (в условных ед) на стропы от угла между ними

Табтица 12.15

Шифр	Грузо- подъем- вость, кН	Диаметр каната, мм	Ширина, мм	Длина, мм	Высота, мм	Macca, KF
КРБ-12,5 КРБ-20 КРБ-32 КРБ-50 КРБ-80 КРБ-125 УТБК-5-170 УТБК-5-225	125 200 320 500 800 1250 1700 2250	14,5 18,5 22,5 25,0 28,0 28,0 28,0 32,0	270 300 425 520 710 830 1060 1170	430 560 680 800 930 930 930 980 1105	1250 1440 1850 2010 2800 2900 3200 3950	200 250 400 730 1250 1900 5430 6150

13. РЕЗЬБЫ И РЕЗЬБОВЫЕ СОЕДИНЕНИЯ

13.1. ПРОФИЛИ РЕЗЬБ И РАЗМЕРЫ РЕЗЬБОВЫХ СОЕДИНЕНИЙ

ПРОФИЛЬ ЗАМКОВОЙ И МЕТРИЧЕСКОЙ КОНИЧЕСКОЙ РЕЗЬБ РД 39-2-863—83, ГОСТ 20692—75, ГОСТ 21210—75, ГОСТ 5286—75, ГОСТ 7918 – 75

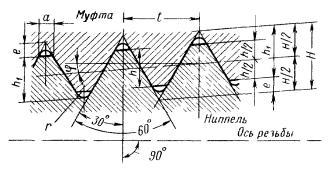
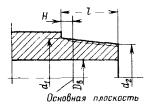
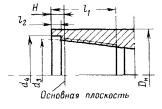


Рис. 13.1. Профиль замковой и метрической конической резьб


Таблица 13.1


,								
Конус- ность	φ	Шаг резьбы <i>t</i>	B	t.	à,	e	r	а
1:32	0° 53′ 42″	6,00 5,50 5,00 4,50 4,00	5,196 4,762 4,330 3,897 3,464	2,580 2,365 2,150 1,935 1,720	3,016 2,764 2,513 2,262 2,010	1,308 1,199 1,090 0,981 0,872	0,872 0,799 0,726 0,654 0,581	1,512 1,386 1,260 1,134 1,008
1:16	1° 47′ 24″	6,35 6,00 5,50 5,08 5,00 4,00	5,497 5,196 4,762 4,398 4,330 3,463	3,298 2,580 2,365 2,639 2,150 1,719	3,763 3,016 2,764 3,010 2,513 2,010	1,099 1,308 1,199 0,880 1,090 0,872	0,635 0,872 0,799 0,508 0,726 0,581	1,267 1,512 1,386 1,016 1,260 1,003
1:12 1:10 1:8	2° 23′ 09″ 2° 51′ 45″ 3° 34′ 36″	5,00 6,35 6,35 6,00	4,328 5,495 5,492 5,189	2,149 3,297 3,296 2,5/7	2,512 3,760 3,659 3,012	1,090 1,099 1,098 1,307	0,726 0,635 0,635 0,871	1,260 1,267 1,267 1,510
1:6	4° 45′ 48″	6,35 6,00 6,35*	5,487 5,184 5,487	3,293 2,574 2 634	3,755 3,009 3,095	1,097 1,305 1,427	0,635 0,870 0,965	1,267 1,508 1,651
1:5 1:4	5° 42′ 38′ 7° 07′ 30′	4,23 6,35 5,08	3,654 5,471 4,376	2,192 3,283 2,626	2,500 3,742 2,993	0,731 1,094 0,875	0,423 0,635 0,508	0,847 0 270 1,016

Примечания. 1. Размеры в мм. 2. Звездочкой обозначена резьба укороченного профиля

№ ЗАМКОВЫЕ РЕЗЬБОВЫЕ СОЕДИНЕНИЯ

FOCT 7918-75, FOCT 5286-75, FOCT 20692-75, FOCT 21210-75, TY 41-01-208-76

Рис, 13.2, Соединение вамковых, МК, РК и РКТ резьб

Таблица 13.2

	Конус-		Средний диаметр в			Ниппель				Муфта		
Тип	ность	Шаг	основной плоскости	Ħ	d_1	$d_{\hat{\mathbf{s}}}$	D _B	3	d_8	d.	D _R	l ₁
3-42 3-50 3-62 3-63,5 3-66 3-73* 3-76 3-86* 3-92 3-101 3 102 3-102* 3-108*	1:54 1:45 1:46 1:46 1:46 1:66 1:66	4,23 4,23 5,08 4,23 5,08 6,35 5,08 6,35 5,08 5,08 5,08 6,35 6,35 6,35	40,808 48,808 56,075 61,633 60,080 67,767 69,605 80,848 82,293 85,480 94,844 96,071 96,723 103,429	10,0 10,0 15,875	45,000 53,000 62,670 67,000 66,674 73,047 76,200 86,128 88,887 92,075 101,438 102,010 102,003 108,709	35,000 41,000 45,170 53,000 47,674 60,380 54,200 71,295 64,887 70,075 77,438 87,010 85,003 89,709	22 28 25 40 25 44 32 54 38 54 62 70 70	50 60 70 70 76 76 88 89 96 88 99 102 114	40,616 48,616 57,418 62,616 57,451 67,779 70,948 80,860 83,635 86,823 96,186 95,424 96,735 103,441	46,0 54,0 65,1 68,0 63,5 74,6 78,6 87,7 91,3 94,5 103,9 104,6 103,6 110,3	57 65 80 83 80 86 95 108 108 118 120 120	53 63 75 75 81 82 93 95 101 96 108 120

Продолжение табл. 13.2

İ	Конус-		Средний диаметр в			Ниплель				Муфта		
Тип	ность	Mar	основной плоскости	H	d ₁	d ₂	$D_{ m B}$	Z	d _b	d4	D _H	l ₁
3-110	1:8	6,00	105,423	16,00	110,000	99,383	78	85	104,846	110,9	127	90
3-117	1:4	5.08	110,868	15,875	117,462	90,462	58	108	112,210	119,9	140	113
3-121	1:4	5,08	115,113	·	121,709	96,209	80	102	116,457	124,1	146	107
3-122*	1:6	6,35	117,500		122,780	103,780	82	114	117,512	124,6	146	120
3-133	1:6	6,35	127,361		133,300	114,300	95	114	126,714	135,9	155	120
3-133*	1:6	6,35	128,059	<u> </u>	133,339	114,339	95	114	128,071	134,9	155	120
3-140	1:4	6,35	132,944		140,195	110,195	70	120	133,629	142,8	172	126
3-147	1:6	6,35	142,011		147,949	126,782	101	127	141,363	150,5	178	133
3-150	1:8	6 00	145,423	16,00	150,000	139,383	118	85	144,846	150,9	172	90
3-152	1:6	6,35	146,248	15,875	152,186	131,019	89	127	145,600	154,7	197	133
3 161	1:6	6,35	155,981		161,920	140,753	120	127	155,334	164,5	185	133
3-171	1:6	6,35	165,598		171,536	150,369	127	127	164,950	174,1	203	133
3-177	1:4	6,35	170,549		177,801	144,551	101	133	171,355	180,2	215	140
3-189	1:6	6,35	183,488		189,427	168,260	148	127	182,841	192,0	212	133
3-201	1:4	6,35	194,731		201,983	167,733	120	137	195,415	205,0	242	144

Примечания. 1. Размеры в мм. 2. Замковая резьба обозначается буквой 3 и определяется диаметром d_1 в целых числах (без дробных долей). 3. Заездочкой обозначена резьба укороченного профиля.

ных долей). 3. Звездочкой обозначена резьба укороченного профиля.

№ ЗАМКОВЫЕ НОМЕРНЫЕ РЕЗЬБОВЫЕ СОЕДИНЕНИЯ

СТАНДАРТ 7 АНИ

Таблица 13.3

Номер	W	Средний		Ниппел	ть	Муфта				
резьбы	Конус- ность	диаметр в основной плоскости	d ₁	d ₂	D _B	1	d _a	ď.	D _B	1,
NC 23	1:6	59,817	65,100	52,400	31,7	76,2	60,50	66,68	79,4	92,1
NC 26	1:6	67,767	73,050	60,350	44,4	76,2	68,43	74,61	88,9	92,1
NC 31	1:6	80,848	86,131	71,323	54,0	88,9	81,53	87,71	104,8	104,8
NC 35	1:6	89,687	94,971	79,096	68,2	95,2	90,68	96,84	120,7	111,1
NC 38	1:6	96,723	102,006	85,065	68,2	101,6	97,40	103,58	133,3	117,5
NC 40	1:6	103,429	108,712	89,662	71,4	114,3	104,15	110,33	139,7	130,2
NC 44	1:6	112,192	117,475	98,425	76,2	114,3	112.84	119,06	152,4	130,2
NC 46	1:6	117,500	122,784	103,734	82,5	114,3	118,44	124,62	158,7	130,2
NC 50	1:6	128,059	133,350	114,300	95,2	114,3	128,76	134,94	171,4	130,2
NC 56	1.4	142,646	149,250	117,500	95,2	127,0	144,63	150,81	190,5	142,9
NC 61	1:4	156,921	163,525	120,600	95,2	139,7	158,92	165,10	209,5	155,6
NC 70	1:4	179,146	185,750	147,650	95,2	152,4	181,14	187,32	241,3	168,
NC 77	1:4	196,621	203,200	161,950	95,2	165,1	198,61	204,79	285,7	181,0

Примечания. 1. Размеры в мм. 2. Профиль резьбы приведен на рис. 13.1. 3. Обозначения см. на рис. 13.2. 4. Все резьбы укороченного профиля; H=15, 875 мм. 5. Шаг резьбы 6,35 мм.

ВЗАИМОЗАМЕНЯЕМОСТЬ РЕЗЬБ

Таблица 13.4

	Заруб	јежная		Заруб	ежная		Заруб	ежная
Отечест- веняля	стандарт- ная	номерная	Отечест- венная	стандарт- ная	номерная	Отечест- венная	стандарт- ная	номерная
3-66 3-76 3-88 3-73 * 3-86 * 3-101	28/8 Reg 27/8 Reg 31/2 Reg 23/8 IF 27/8 IF 31/2 FH	— — NC 26 NC 31	3-102 * 3-108 * 3-117 3-121 3-122 * 3-133 *	3 ¹ / ₂ IF 4 FH 4 ¹ / ₂ Reg 4 ¹ / ₂ FH 4 IF 4 ¹ / ₂ IF	NC 38 NC 40 — NC 46 NC 50	3-140 3-147 3-152 3-171 3-177 3-201	5 ¹ / ₂ Reg 5 ¹ / ₂ FH 6 ⁵ / ₈ Reg 6 ⁵ / ₈ FH 7 ⁵ / ₈ Reg 8 ⁵ / ₈ Reg	

^{* —} резьба укороченного профиля.

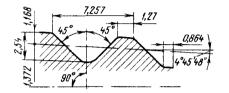
РЕЗЬБОВЫЕ СОЕДИНЕНИЯ МК, РК, РКТ

РД 39-2-863-83

Таблица 13.5

	Конус-	Шаг	Средний диа-			Ниппель				Муфта		
CuT	ность	резь-	метр в основной плоскости	H	d _i	d ₂	D _B	I	d _s	d ₄	D_{H}	l _i
MK 66 MK 75 MK 76	1:16 1:16 1:32	6 6 4	62,421 71,421 73,780	16,00	66,0 75,0 76,0	59,750 69,375 73,625	30 30 60	100 90 76	60,842 69,842 72 .560	68,5 77,0 78,0	100 95 88	105 100 80

28


© Продолжение табл. 13.5

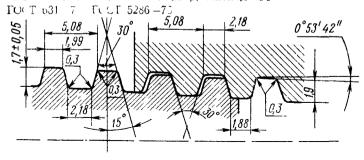
Тип	Конус- ность	Шаг резь- бы	Средний диа- метр в основной плоскости	H	Ниппель				Муфта			
					d_1	d _s	D _B	ı	d_{s}	<i>d</i> ₄	D_{H}	I ₂
MK 84 MK 84 MK 90 MK 98 MK 105 MK 110 MK 112 MK 116 MK 117 MK 120 MK 122 MK 125 MK 125 MK 130 MK 135 MK 135 MK 140 MK 150 MK 150 MK 150 MK 150 MK 154 MK 156 MK 156	1:16 1:16 1:16 1:16 1:16 1:18 1:32 1:16 1:32 1:16 1:32 1:16 1:32 1:32 1:32 1:32 1:32 1:32 1:32 1:32	65,666666454435666556666556 5566666556	80,421 80,636 86,421 94,421 101,421 105,423 106,421 109,780 112,421 114,565 116,281 117,496 118,518 121,421 120,423 124,135 127,350 126,920 131,421 136,421 141,421 147,350 146,920 145,423 150,920 150,421 153,135 152,920	16,00	84,0 84,0 90,0 98,0 105,0 110,0 112,0 116,0 122,0 122,0 125,0 125,0 127,0 130,0 130,0 140,0 145,0 150,0 150,0 150,0 154,0 154,0 156,0 156,0	77,437 78,000 83,437 91,500 98,500 95,500 103,000 109,500 113,875 114,000 115,000 113,500 110,500 123,375 127,188 126,250 127,500 132,500 137,500 146,500 146,500 135,500 147,375 152,500 152,500	35 35 50 60 60 78 70 68 96 95 98 90 98 100 105 110 115 125 125 125	96 96 105 104 104 116 112 80 120 100 80 102 120 116 116 116 112 120 120 120 120 120 120 120	78,842 79,272 84,842 92,842 99,842 104,846 104,842 113,130 115,562 116,992 117,702 119,842 119,846 122,272 125,700 124,840 129,842 139,842 139,842 145,700 144,840 144,840 148,840 148,840 148,840 150,840	86,0 86,0 92,0 100,0 112,5 112,5 114,0 121,2 121,0 121,2 124,0 127,5 128,5 132,0 132,5 137,5 142,5 147,5 152,0 152,3 156,3 156,3 158,0	112 112 110 142 125 127 127 122 140 132 134 134 135 140 145 145 145 145 145 145 145 145 170 172 172	102 102 115 114 114 122 125 85 130 105 90 120 120 120 130 130 122 130 118 122 120 122 120 122 120 122

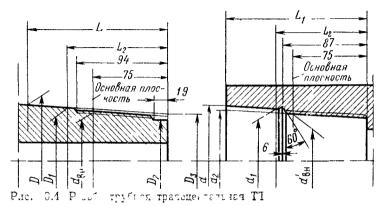
Пролоджение табл. 13.5

Тип	Конус- ность	Шаг резь- бы	Средний диа метр в основной плоскости	Н	Ниппель				Муфта			
					d_1	$d_{\hat{z}}$	D _B	I	ds	d.	D _H	l ₁
MK 160 MK 168 MK 168 MK 174 MK 175 MK 177 MK 180 MK 180 MK 185 MK 195 MK 265 PKT 171 PKT 177 PKT 208 PKT 210 PKT 218 PKT 210 PKT 218 PKT 230 PKT 240 PK 230 PK 230	1 · 16 1 32 1 16 1 · 32 1 32 1 12 1 16 1 32 1 16 1 32 1 16 1 32 1 16 1 32 1 16 1 32 1 16 1 32 1 16 1 17 1 16 1 16 1 17 1 16 1	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	156,421 164,920 164,421 166,920 170,937 173,421 176,851 176,920 181,421 191,920 261,421 166,379 173,362 202,562 204,703 211,423 224,704 228,204 234,562 195,104 225,104	16,00 16,00 16,00 16,00 15,87 16,00 20,00 20,00 16,00 20 00 15,87 16 00 16,00	160,0 168,0 168,0 170,0 177,0 175,0 177,0 180,0 185,0 265,0 271,0 177,0 208,5 210,0 218,97 230,0 234,0 240,5 199,35	153 375 164,250 160,500 166 094 170,250 165,000 169 500 173,000 176,375 177,500 191,250 256,500 161,000 169,300 188,500 198 000 211,172 212 000 219,000 219,851 221,851	138 140 126 135 140 144 145 140 145 150 165 225 144 140 165 170 182 190 195 205 162 181	106 120 120 120 125 120 120 120 112 116 120 136 120 120 120 120 120 120 120 120 120	154,842 162 840 162 842 168,840 168,840 169 540 171 842 175,702 174 840 179,842 189,840 259,842 164,404 171,724 201,915 203,408 212,374 223,108 227,408 233,915 192,858 222,858	162,0 170,2 169,5 172 3 176,3 177,0 179,3 182,0 182 3 187,0 197,3 267,5 172,5 172,5 210,5 221 5 232,0 236,5 242 5 201,5 231,5	178 189 190 185 190 195 195 195 215 215 290 190 195 240 235 240 250 260 270 215 255	120 130 130 130 123 128 126 117 120 126 126 126 126 130 130 1530 140 120

Примечания 1 Размеры в мм 2 Обозначения см на рис 13 2 3 Резьба обозначается буквами и определяется диаметром d_1 (в целых числах), шагом резьбы и ее конусностью. МК $125 \times 6 \times 16$ 8

РЕЗЬБОВЫЕ СОЕДИНЕНИЯ Н-90 КАТАЛОГ ФИРМЫ «ХЬЮЗ СЛАЙМЛАЙН»


Рис. 13.3. Профиль резьбы типа Н-90


Таблица 13.6

	Конус-		Муфта					
Шифр	ность	d _i	d ₂	$D_{\rm B}$	1	d ₄	$D_{\rm H}$	1,
3 ¹ / ₂ H-90 3 ¹ / ₂ H-90 4 H-90 4 ¹ / ₂ H-90 5 H-90	1:16 1:6 1:6 1:6 1:6	97,41 104,78 114,30 122,63 129,73 136,53	89,129 88,503 96,838 104,380 109,93 113,11	60,3 69,8 69,8 76,2 76,2 76,2	79,4 98,4 104,8 111,1 117,5 117,5	98,42 106,36 115,89 124,22 131,37 138,11	121 127 140 152 165 171	85,7 112,7 119,1 125,4 131,8 131,8
6 ⁵ / ₈ H-90 7 H-90 7 ⁶ / ₈ H-90 8 ⁵ / ₈ H-90	1:6 1:4 1:4 1:4	152,40 165,10 187,72 209,95	131,76 134,94 149,62 168,67	82,5 88,9 95,2 95,2	123,8 146,0 152,4 165.1	153,99 166,70 189,30 238,10	197 209 241 273	144,4 150,8 166,7 179,4

Примечания 1. Размеры в мм. 2. Обозначения приведены на рис. 13.2. 3. Прв конусности 1 · 6 H=16.67 мм, прв конусчости 1 · 4 H=10.32 мм.

РЕЗЬБА ТРУФНАЯ ТРАПЕЦЕИДАЛЬНАЯ ТТ

288

Таблица 13.7

Тип			Труба Замок									
резьбы	d _{BH}	D	D ₁	D_2	D_{a}	L_2	Ţ	$d_{ m BH}^{\prime}$	đ	d ₁	d ₂	L ₁
TT-63	63,6	71,4	69,5	59,5	66,5	96	158	63,38	71,155	69,28	65,864	156
TT-78	78,6	85,9	84,5	74.5	81,5	96	140	7 8,35	85,375	84,25	80,131	132
TT-82	82,6	89,9	88,5	78,5	85,5	96	150	82,34	89,369	88,24	84,121	132
TT-94	94,6	101,9	100,5	90,5	97,5	96	150	94,31	101,335	100,21	96,091	132
TT-99	99,6	107,7	105,5	95,5	102,5	96	166	99,30	107,325	105,20	102,029	164
TT-104	104,6	112,7	110,5	100,5	107,5	96	166	104,29	112,315	110,19	107,019	16
TT-107	107,6	115,2	113,5	103,5	110,5	96	150	107,29	114,565	113,19	109,321	14
TT-112	112,6	125,0	121,0	108,5	117,9	100	208	112,27	124,000	120,69	115,287	20
TT-122	122,6	130,2	128,5	118,5	125,5	96	150	122,25	129,525	128,15	124,281	14
TT-127	127,6	136,3	133,5	123,5	130,5	96	190	127,25	136,025	128,15	130,715	18
TT-132	132,6	140,2	138,5	128,5	135,5	96	150	132,23	139,505	138,13	134,261	14
TT-132*	132,6	152,4	148,7	128,5	145,4	108	227	132,23	152,000	148,34	136,829	22
TT-138	138,6	147,0	144,5	134,5	141,5	96	150	138,22	145,495	144,12	140,251	14
TT-140	140,6	149,4	146,5	136,5	143,5	96	190	140,21	148,975	146,11	143,675	18
TT-140*	140,6	172,4	168,6	136,5	165,0	118	242	140,21	172,000	168,19	145,269	24
TT-160*	160,6	192,4	188,2	156,5	184,5	118	257	160,17	192,000	187,72	165,689	25

Примачания. 1. Размеры в мм. 2. Звездочкой обозначеня резьба для УБТ.

РЕЗЬБОВЫЕ СОЕДИНЕНИЯ ОБСАДНЫХ ТРУБ ДИАМЕТРОМ $351-426~{ m mm}$

ТУ 14-3-766—78

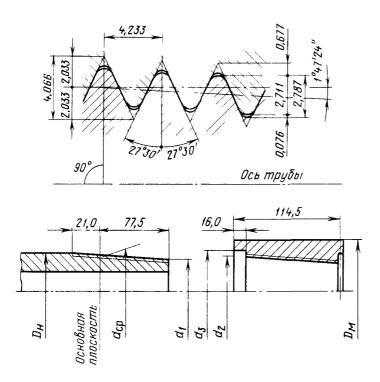


Рис. 13.5. Резьба обсадных труб диаметром 351-426 мм

Таблица 13.8

	Труба, мм		Муфта, мм				
D _H	d _i	$d_{ m cp}$	₫ş	d_3	D_{M}		
351	346,16	348,29	345,95	353	376		
377	372,16	374,29	371,95	379	402		
426	421,16	423,29	420,95	428	451		

РЕЗЬБА ОБСАДНЫХ ТРУБ ОГ-1м

ТУ 14-3-656-78, ТУ 14-3-714-78

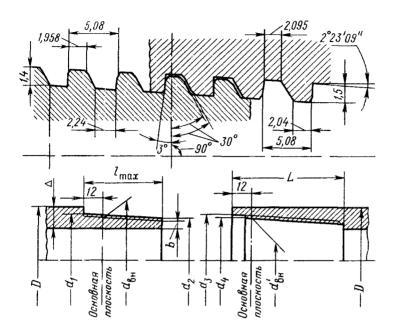


Рис. 13.6. Резьба обсадных труб ОГ-1м

Таблица 13.9

			Ниппель		Муфта			
D	Δ	d _{BH}	d ₁	d _±	d' _{BH}	d _{\$}	d.	
139,7	10—11	131,1	134,9	127,4	130,8	134,7	131,8	
168,3	10—12	159,7	163,5	156,0	159,4	163,3	160,4	
177,8	10—12	169,2	173,0	165,5	168,9	172,8	169,9	
193,7	10-12	185,1	188,9	181,4	184,8	188,7	185,8	
219,1	10—12	210,5	214,3	206,8	210,2	214,1	211,2	
244,5	10—12	235,9	239,7	232,2	235,6	239,5	236,6	

Примечание Размеры в им

РЕЗЬБА ОБСАДНЫХ ТРУБ ОТТМ, ТБО И НАСОСНО-КОМПРЕССОРНЫХ ТРУБ НКМ

ΓΟCT 632—80, ΓΟCΓ 633—80, ΤΥ 14-3-245—74, ΤΥ 14-3-537—76, ΤΥ 14-3-655—78, ΤΥ 14-3-812—79, ΤΥ 14-3-1272—84

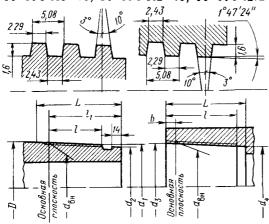


Рис. 13.7. Резьба труб обсадных ОТТМ, ОТТГ, ТБО и насосно-компрессорных НКМ 114

Таблица 13.10

Диа- метр	Средний диаметр резьбы в		Труба				M	уфта	
тру- бы D	основной плоскости $d_{\rm BH}$	d ₁	d ₁	V	11	dŝ	ь	ı	d ₄
			OT1	M					
114,3 127,0 139,7 146,1 168,3 177,8 193,7 219,1 244,5 273,1 298,5 323,9	111,100 123,800 136,500 142,850 165,075 174,600 190,475 215,875 241,275 269,850 295,250 320,650	111,675 124,250 136,700 143,030 165,025 174,300 189,925 214,950 240,350 268,925 294,325 319,725		74 76 80 80 84 88 92 98 98 98	42 44 48 48 52 56 66 66 66 66 66	112,225 124,925 137,625 143,975 166,200 175,725 191,600 217,000 242,400 270,975 269,375 321,775	18 18 18 18 18 18 18 18 18 18	76 78 82 82 86 90 94 100 100 100	
			ТБ	0					
139,7 146,1 168,3 177,8 193,7 219,1 244,5 273,1	136,500 142,850 165,075 174,600 190,475 215,875 241,275 269,850	135,200 141,550 163,52 172,800 188,475 213,450 238,850 267,425	131,400 137,750 159,725 169,000 184,625 209,650 235,050 263,625	104 104 108 112 116 122 122 122	72 72 76 80 84 90 90 90	137,875 144,225 166,450 175,975 191,850 217,250 242,650 271,225	22 22 22 22 22 22 22 22 22	78 78 82 86 90 96 96	131,450 137,800 159,775 169,050 184,675 209,700 235,100 263,675
1142 1	111,100	1 110 175	HK		1 66	1 110 475 1		1.06	106,425
114,3 При	111,100 мечание Разм	110,175 еры в мм.	100,375	98	1 00	112,475	22	1 90	100,420

РЕЗЬБА НАСОСНО-КОМПРЕССОРНЫХ ТРУБ НКМ И НКБ

ГОСТ 533--80

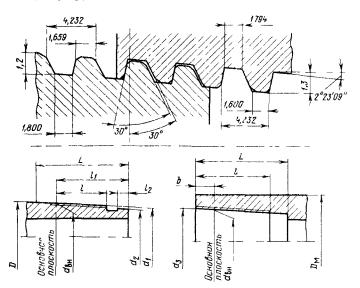


Рис. 13.8. Резьба насосно-компрессорных труб НКМ и НКБ

Таблица 13.11

Диа- мегр	Средянй диаметр резьбы в основ-		Тру	5a				1	Муфта (раструб)	-
тру- бы <i>D</i>	ной плос- кости d _{вн}	d ₁	นึง	L	I	l_1	12	dş	ь	D _M	L	ı
Comments Street	Sec. 20 - Section dates a second de la constant a seco	THE STATE OF THE SECOND		ŀ	IKM						i ar 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
60,3 73,0 88,9 101,6	57,925 70,625 86,500 99,200	56,575 69,275 84,317 97,017	54,175 66,875 81,917 94,617	65 65 75 75	25 35	45 55	10 10	59,225 71,875 87,700 100,350	15.6 15,0 14,4 13,8	73,0 88,9 108,0 120,6	63 63 73 73	53 63
				F	ΙΚБ							
60,3 73,0 88,9 101,6 114,3	62,267 75,267 91,267 104,267 117,267	60,167 72,750 88,750 101,750 114,750	57,167 69,750 85,750 98,750 111,750	70 75 75 75 75	41 41 41	54 59 59 59	18 18 18	63,4 76,4 92,4 105,4 118,4	13,6 13,6 13,6 13,6 13,6	71,0 86,0 104,0 116,0 130,0	70 75 75 75 75	60 65 65 65

13.2. МОМЕНТЫ СВИНЧИВАНИЯ РЕЗЬБ

моменты свиччивания замковых резьб

РД 39-2-863-83, РД 39 2-961-83, ТУ 26-02-1026-86

Таблица 13.12

Тип резьбы	Момент свинчивания	Тип резьбы	Момент свинчивания
Every vere cover	W NO OTOTAL AOVH	MK 112	6,5—7,5
	и из стали 40ХН, т запаса 1,3	MK 116	10—12
3-42	1,2-2,5	MK 117 MK 119	12—14 12—14
3-50	2,5-3,5	MK 120	10-11
3-63.5	3,0-4,7	MK 122	10—13
3-76	4,96,3	MK 125	14—16
3-88	7.3-9.4	MK 127	14—16
3-121	14,018,0	MK 130	14-16
3-133	23,0—26,0	MK 135	14—16
3-147	26,0-34,0	MK 140	15—17
3-161	25,0—33,0	MK 145	17—19
		MK 150	1618
	УБТ из стали	MK 154	16—18
40X1	H2MA	MK 156	17-19
3-86		MK 160 MK 168	17—19 22—25
3-101	6,6 8,0	MK 100 MK 170	22-25 20-22
3-101 3-108*	11,4	MK 174	22-24
3-100	15,0	MK 175	22-24
3-147	25,3	MK 177	25-27
3-161	36,5	MK 180	25-27
3-171	50,0	MK 185	30-32
3-201	50,0	MK 195	30-32
		MK 265	45—48
Метрические	е конические	MK 290	4650
N 17 66) 70	PKT 171 PKT 177	18—21 25—27
MK 66 MK 75	7—8 9—10	PTK 200	31-33
MK 76	45	PKT 208	32-34
MK 84	12-13	PKT 210	32 - 34
MK 90	1214	PKT 218	33-35
MK 98	1416	PKT 230	35-37
MK 105	1416	PKT 234	35-37
MK 110	1315	PKT 240	35-37
Примечание Зд	ссь и далее момент сви	нчивания в кН м	

моменты свинчивания убт, изготовленных по стандарту ани

Таблица 13.13

Тип	Наружный		Внутренн	ий диаметр	отверстия,	мм	
резьбы	днаметр УБТ, мм	38,1	44,4	50,8	57,1	63,5	71,4
NC 23	76,2 79,4	3,4 3,7	_		_	_	
	82,5	3,7	_	=	=	_	=

Продолжение табл. 13.13

Тип	Наружный		Внутренни	й диаметр	отверстия,	мм	
резьбы	диаметр УБТ, мм	38,1	44,4	50,8	57,1	63,5	71,4
NC 26	88,9 95,2	6,3 6,5	5,1 5,2	_	<u>-</u>	_	
NC 31	98,4 104,8 107,9 114,3	6,4 10,2 12,2 13,0	6,4 10,2 11,3 11,5	6,4 9,5 9,6 9,7			
NC 35	114,3 120,6 127,0	<u>-</u> -	12,7 17,0 17,2	12,7 15,0 15,3	12,7 12,9 13,0	10,3 10,4 10,6	_
NC 38	120,6 127,0 133,3 139,7	_ _ _	13,6 19,3 22,5 22,8	13,8 19,3 20,5 20,7	13,8 17,9 18,1 18,4	13,8 15,3 15,5 15,7	11,5 11,7 11,8 12,0
3¹/₂ H-90	120,6 127,0 133,3 139,7	111	12,1 17,7 23,7 25,8	12,1 17,7 23,4 23,7	12,1 17,7 21,0 21,3	12,1 17,7 18,4 18,6	12,1 14,5 14,6 14,8
NC 40	127,0 133,3 139,7 146,0 152,4	11111	15,1 21,1 27,6 28,7 29,1	15,1 21,1 26,2 26,5 26,8	15,1 21,1 23,7 24,0 24,3	15,1 20,7 21,0 21,2 21,5	15,1 16,9 17,1 17,3 17,5
4 H-90	133,3 139,7 146,0 152,4 158,7	1111	1111	17,4 24,1 31,2 33,0 33,4	17,4 24,1 30,1 30,4 30,7	17,4 24,1 27,2 27,5 27,8	17,4 22,9 23,2 23,4 23,7
4² /₂ Reg	139,7 146,0 152,4 158,7	_ _ _		21,5 28,5 33,0 33,3	21,5 28,5 30,4 30,7	21,5 27,2 27,5 27,8	21,5 23,2 23,5 23,8
NC 44	146,0 152,4 158,7 165,1		1 1 1	28,9 35,4 35,8 36,2	28,9 32,7 33,1 33,4	28,9 29,7 30,1 30,4	25,3 25,6 25,8 26,1
41/2 FH —	139,7 146,0 152,4 158,7 165,1		-	18,6 25,8 33,4 37,9 33,3	18,6 25,8 33,4 35,2 35,6	18,6 25,8 31,9 32,2 32,6	18,6 25,8 27,7 28,1 28,4

Примечание. Величины моментов приведены максимальные и обусловлены прочностью ниппеля или профилем резьбы.

Таблица 13.14

Тип	Наруж-		Внутреня	ий диаметр	отверстия	, мм	
резьбы	диаметр УБТ, мм	57,1	63,5	71,4	76,2	82,5	88,9
NC 46	146,0 152,4 158,7 165,1 171,4	24,5 32,4 38,9 39,3 39,7	24,5 32,4 35,8 36,2 36,5	24,5 31,1 31,4 31,8 32,1	24,5 28,3 28,6 28,9 29,2	<u> </u>	
4 [‡] / ₂ H-90	146,0 152,4 158,7 165,1 171,4	24,9 32,8 39,9 40,2 40,6	24,9 32,8 36,7 37,1 37,5	21,9 32,1 32,4 32,7 33,0	24,9 29,3 29,6 29,8 30,1	— — —	
5 H-90	158,7 165,1 171,4 177,8	35,5 44,6 49,1 49,5	35,5 44,6 45,8 46,2	35,5 40,8 41,2 41,6	35,5 37,8 38,2 38,5		
5 ¹ / ₂ H-90	171,4 177,8 184,1 190,5	47,8 58,2 59,7 60,2	47,8 55,7 56,2 56,7	47,8 50,9 51,3 51,8	47,3 47,7 48,1 48,6		
54/2 Reg	171,4 177,8 184,1 190,5	44,2 54,6 59,2 59,8	44,2 54,6 55,7 56,3	44,2 50,4 50,9 51,4	44,2 47,2 47,7 48,2		
NC 50	158,7 165,1 171,4 177,8 184,1	31,8 41,1 50,8 53,5 54,1	31,8 41,1 49,7 50,1 50,6	31,8 41,1 45,0 45,4 45,9	31,8 41,1 41,9 42,3 42,7	31,8 37,1 37,5 37,8 38,2	
51/ ₂ FH	177,8 184,1 190,5 196,8		45,9 57,3 69,3 72,0	45,9 57,3 66,2 66,8	45,9 57,3 62,8 63,4	45,9 57,3 57,9 58,5	
NC 56	184,1 190,5 196,8 203,2		56,0 67,5 72,5 73,0	56,0 66,5 67,5 68,0	56,0 63,5 64,0 64,5	56,0 58,5 59,0 59,5	
65/8 Reg	190,5 196,8 203,2 209,5		64,5 77.5 80,0 80,5	64,5 74,6 74,5 75,0	64,5 70,5 71,0 71,5	64,5 65,5 66,0 66,5	
65/ ₈ H-90	190,5 196,8 203,2 209,5	1 1 1	64,0 77,0 83,5 84,5	64,0 77.0 78,5 79,0	64,0 74,0 75,0 75,5	64,0 69,0 70,0 70,5	

Продолжение табл. 13.14

Тип	Наруж-		Внутрен	нй диаметр	отверстия,	, мм	
резьбы	диаметр УБТ, мм	57,1	63,5	71,4	76,2	82,5	88,9
NC 61	203,2 209,5 215,9 222,2 228,6	_ _ _ _	76,0 90,5 100,5 101,5 102,5	76,0 90,5 95,0 96,0 96,5	76,0 90,5 91,5 92,0 93,0	76,0 85,5 86,0 87,0 87,5	
5 ¹ / ₂ IF	203,2 209,5 215,9 222,2 228,6 234,9		78,0 92,5 103,5 104,0 105,0 106,0	78,0 92,5 97,5 98,5 99 5 100,0	78,0 92,5 94,0 94,5 95,5 96,0	78,0 88,0 88,5 89,5 90,0 90,5	78.0 82,0 82,5 83,5 84,0 85,0

Примечание. См. примечание к табл. 13.13.

Таблица 13.15

	Наружный		Внутренний	диаметр о	гверстия, м	М
Тип резьбы	диаметр УБТ, мм	71,4	76,2	82,5	88 ,9	95,2
6 ⁵ / ₈ FH	215,9 222,2 228,6 234,9 241,3	95,0 111,5 116,5 117,5 118,5	95,0 111,5 112,5 113,5 114,5	95,0 106,0 107,0 107,5 108,5	95,0 100,0 101,0 101,5 102,5	92,5 93,5 94,0 95,0 95,5
NC 70	228,6 234,9 241,3 247,6 254,0 260,3	104,5 123,0 141,5 151,0 152,5 153,5	104,5 123,0 141,5 147,0 148,0 149,0	104,5 123,0 140,0 141,0 142,0 143,0	104,5 123,0 133,5 134,5 135,5 136,5	104,5 123,0 126,5 127,5 128,5 129,5
NC 77	254,0 260,3 266,7 273,0 279,4		149,5 171,5 194,5 202,0 203,5	149,5 171,5 194,5 195,5 197,0	149,5 171,5 187,5 188,5 190,0	149,5 171,5 179,5 181,0 182,0
	Соединения	с широко	проходных	и отверсти	ем	
7 H-90	203,2 209,5 215,9	74,0 88,0 100,0	74,0 88,0 96,0	74,0 88,0 91,0	74,0 84,5 85,0	<u>-</u>
7 ⁵ / ₈ Reg	215,9 222,2 228,6 234,9 241,3		83,5 99,5 116,5 123,0 124,0	83,5 99,5 116,5 117,5 118,0	83,5 99,5 110,5 111,0 112,0	83,5 99,5 103,5 104,5 105,5

Продолжение табл. 13.15

_	Наружный		Внутренний	диаметр о	тверстия, м	М
Тип резьбы	диаметр УБТ, мм	71,4	76,2	82,5	88,9	95,2
7 ⁵ / ₈ H-90	228,6 234,9 241,3		101,1 119,0 137,5	101,0 119,0 137,5	101,0 119,0 137,5	101,0 119,0 133,5
8 ⁵ / ₈	254,0 260,3 266,7		151,0 173,5 195,0	151,0 173,5 188,5	151,0 173,5 181,5	151,0 173,0 174,0
8 ⁵ / ₈ H-90	260,3 266,7	_	157,0 180,0	157,0 180,0	157,0 180,0	157,0 180,0

Примечание См. примечание к табл. 13.13.

моменты свинчивания обсадных труб

Таблица 13.16

Диаметр трубы, мм		ругленного филя			
	Толщина	стенки, мм	OTTM	OTTF, TEO	0Г-1м
	<9	>9			
114,3 127,0 139,7 146,1 168,3 177,8 193,7 219,1 244,5 273,1 298,5 323,9 339,7 351,0 377,0 406,4 425,5 508,0	3,0—4,3 3,3—5,1 5,0—6,0 5,0—6.0 6,0—7,9 7,1—8,4 7,4—9,6 11,6 13,1 11,8—15,2 16,8 — — — — — —		3,3-4,7 3,4-4,8 3,7-6,0 4,3-6,1 4,3-6,6 4,4-7,0 4,9-8,4 5,3-8,5 5,6-10,2 5,8-9,4 6,0-8,7 7,5-9,6 7,8-9,8	3,9—5,2 4,0—5,4 5,8—8,0 6,0—8,2 6,9—10,7 7,0—11,0 7,5—11,5 9,9—16,0 11,4—21,9 12,6—21,6 ————————————————————————————————————	3,5 4,0 4,5 4,5 5,5 6,5 8,5 1

Примечание. При свинчивании труб на УС-1 веобходимо, чтобы $M_{\rm CB}=(1.4\div1.6)~M_{\rm TAGЛ},$ на ФУМ $\mapsto M_{\rm CB}=0.8M_{\rm TAGЛ}.$

моменты свинчивания зарубежных обсадных труб с резьбой закругленного профиля

БЮЛЛЕТЕНЬ RP 5CI АНИ

Таблица 13.17

Диаметр	Толщина	Группа прочности стали										
диаметр труб, мм	стеньи, мм	C 75	N 80	C 95	P 110							
114,3	6,4 7,4 8,6	2,3—3,7 2, ⁷ —4,5 —	2,4—4,0 2,9—4,7	2,7—4,4 3,3—5,4 —	3,2—5,2 3,8—6,3 4,6—7,6							
127,0	7,5 9,2	3,1—5,1 3,9—6,5	3,3—5,4 4,1—6,9	3,7—6,1 4,7—7,9	4,3-7,2 5,5-9,2							
139,7	7,7 9,2 10,5	3,4—5,6 4,2—7,0 4,9—8,2	3,6—6,0 4,4—7,4 5,2—8,7	4,16,8 5,08,4 5,99,9	4,8—8,0 5,9—9,8 6,9—11,5							
168,3	8,9 10,6 12,1	4,7—7,8 5,7—9,5 6,6—11,0	5,0—8,3 6,1—10,1 7,0—11,7	5,79,5 6,911,6 8,013,4	6,7—11,1 8,1—13,5 9,4—15,6							
177,8	8,1 9,2 10,4 11,5 12,7 13,7	4,3—7,2 5,1—8,4 5,8—9,7 6,6—10,9 7,3—12,2 8,0—13,3	4,6—7,6 5,4—9,0 6,2—10,3 7,0—11,6 7,7—12,9 8,5—14,1	5,2-8,7 6,2-10,2 7,1-11,8 8,0-13,3 8,9-14,7 9,7-16,1	7,2—12,0 8,3—13,8 9,3—15,5 10,3—17,2 11,3—18,8							
193,7	8,3 9,5 10,9 12,7	4,8—8,0 5,6—9,4 6,6—11,0 7,8—13,0	5,1—8,5 6,0—9,9 7,0—11,6 8,3—13,8	5,8—9,7 6,8—11,4 8,0—13,3 9,5—15,8	8,0—13,3 9,3—15,6 11,1—18,4							
219,1	10,2 11,4 12,7 14,2	6,7—11,2 7.7—12,8 8 7—14,4 9,7—16,2	7,1—11,9 8,2—13,6 9,2—15,3 10,3—17,2	8,2—13,6 9,4—15,6 10,6—17,6 11,9—19,8	- 10,9—18,2 12,3—20,5 13,8—23,1							
244,5	10.0 11,1 12,0 13,8	7,2—12,0 8,0—13,4 8,8—14,7 10,4—17,3	7,6—12,7 8,6—14,2 9,4—15,6 11,0—18,4	8,8—14,6 9,8—16,4 10,8—18,0 12,7—21,1	10,2—17,0 11,5—19,1 12,6—21,0 14,8—24,6							
273,0	11,4 12,6 13,8	7,8—13,0 8,7—14,6 —	8 3—13,9 9,3—15,5 —	9,616,0 10,717,8 	11,2—18,7 12,5—20,8 13,9—23,1							
29 8,5	12,4	9,0—15,0	9,6—16,0	11,1—18,4								
339,7	13,1	10,2-16,9	10,8—18,0	12,520,8								

МОМЕНТЫ СВИНЧИВАНИЯ ОБСАДНЫХ ТРУБ ИЗ СТАЛИ ГРУПП ПРОЧНОСТИ С 75, N 80, C 95, P 110 C РЕЗЬБОЙ «ВАМ» КАТАЛОГ ФИРМЫ «ВАЛЛОУРЕК»

Таблица 13.18

Днаметр трубы, ым	Толщина стенки, мм	Момент свинчивания	Диамегр трубы, мм	Толщина стенки, мм	Момент свинчивания
114,3	5,7 6,4 6.9 7,4 8,6 9,7 10,2 10,9	5,7 6,7 6,0 -7,0 6,0 -8,0 7,0-9,0 7,5-9,5 8,5-11,0 8,5-11,0 8,5-11,0	219,1	7,7 8,9 10,2 11,4 12,7 14,2	13,0 -16,0 9,0 -12,0 11,0 -14,0 13,0 -16,0 14,0 -17,0 16,0 -19,0 17,0 -20,0
127,0	6,4 7,5 9,2 10,7	6,0—9,0 8,0 —11,0 11,0—14,0 13,0—16,0	244,5	8,9 10,0 11,1 12,0 13,8 15,1	10,0 -13,0 11,5 -14,5 13,0 -16,0 15,0 -18,0 15,0 -18,0 18,0 -21,0
139,7	7,0 7,7 9,2 10,5	7,0—10,0 8,0—11,0 10,0—13,0 10,013,0	273,0	15,9 19,1 8,9 10,2	18,0 -21,0 20,0 -23,0 11,0 -14,0 11,5 -14,5
168,3	7,3 8,9 10,6 12,1	10,0 -13,0 10,0—13,0 11,0—14,0 12,0 15,0		11,4 12,6 13,8 15,1	13,0 -16,0 15,0 -18,0 16,0 -19,0 17,0 -20,0
177,8	8,1 9,2 10,4 11,5 12,7 13,7	9,0—12,0 10,0—13,0 11,0—14,0 11,0—14,0 13,0—16,0 14,0—17,0	339,7	16,5 17,8 19,1 9,7 10,9 12,2	18,0 -21,0 19,0 -22,0 20,0 -23,0 13,0 -16,0 11,0 -14,0 14,0-17,0
193,7	15,0 16,3 8,3 9,5 10,9	14,0 17,0 16,0-19,0 9,0-12,0 10,0-13,0 11,0-14,0	508,0 762,0	13,1 :2,7 25,4	14,0 –17,0 15,0 –20,0 25,0—35,0

Моменты свинчивания НКТ с резьбой закругленного профиля по ГОСТ 633 -80

Диаметр трубы, мм	48,3	60,3	73,0	88,9	101,6	114,3
Момент свинчивания,						
кН.м	0.50.8	0.81.1	11.5	1.3-2.2	1.6 - 2.8	1.7-3.2

СПИСОК ЛИТ РАТУРЫ

1. Александров М. М. Взаимодействие колонны труб со стенками скважины — М Недра, 1982

2 Браун М Х Оценка эксплуатационной характеристики сеток для вибросит — «Нефть, газ и нефтехимия за рубежом», 1986, № 10, с 15—20 3 Бузапов А И , Измаилов Л Б , Лебедев О А Проектирование конструкций скважин — М Недра, 1979 4 Булапов А И , Пеньков А И , Проселков Ю. М Справочник по про-

мывке скважин - М Недра, 1984

5 Бурильные трубы из алюминиевых сплавов В Ф Штамбург, Г М Файн.

С. М Данелянц, А А Шеина — М Недра, 1980

6 Вашяние различных факторов на продолжительность освоения скважин/ М Г Газимов, Ю А Имачаликов, Н. И Рылов, Я И Сулейманов — РНГС «Бурение», 1983, № 2, с 14—16

7 Вовчановский И Ф Породоразрушающий инструмент на основе славу-

тича для бурения глубоких скважин — Киев, Наукова думка, 1979

8 Гоинс У, К, Шеффилд Р. Предотвращение выбросов — М 1987.

9 Γ ульянц Γ . M Справочное пособие по противовыбросовому оборудованию скважин — М Недра, 1983

10 Забойные винтовые двигатели для бурения скважин/М Т. Гусман,

Д. Ф. Балденко, А М Кочнев, С С Никомаров — М Недра, 1981

11 Забойные двигатели и запасные части Каталог/И Я Вальдман, А. М Паньков, А. Б. Ильин, К. Н. Колодина — М. Недра, 1980 12 Добкин В. А., Никитин Г. М., Утробин А. А. Обслуживание и ремонт

гидравлических забойных двигателей — М Недра, 1983

13 Карнаухов М. Л., Рязанцев Н. Ф. Справочник по испытанию скважин. —

М : Недра, 1984

14 Крепление высокотемпературных скважин в коррозионно-активных средах В М Кравцов, Ю С Кузнецов, М. Р Мавлютов, Ф. А Агзамов — И. Недра, 1987

15 Кривоненков С П, Максименко В. П. Исследования гидравлических сопротивлений в керноотборном инструменте — РНТС «Бурение», 1983, № 3,

16 Лукманов Р Р Определение градиентов давления гидроразрыва продуктивного пласта при проводке скважин на Арланском месторождении — РНТС «Бурение», 1982, № 7, с 6—7.

17 Медведский Р. И Строительство и эксплуатация скважин на нефть и

газ в вечномерэлых породах — М Недра, 1987

18 Михеев В Л. Технологические свойства буровых растворов — М: Недра, 1979

19 Орлов А В О выборе насадок для гидромониторных долот и цилин гро-

вых втулок насосов — РНТС «Бурение», 1982, № 2, с 2—5

20 Руководство по ликвидации прихватов бурильного инструмента с применением ударного устройства типа УЛП — Краснодар, ВНИИКРнефть, 1982.

21 Рязанов Я А Справочник по бъровым растворам — М Недра, 1979. 22 Санваджеу К А Усовершенствование технологии цементирования хво-

стовиков обгадных колонн в газовых скважинах с повышенным пластовым давлением — М ВНИИЭгазпром, 1985, № 13

23 Сароян А E , Субботин M . А Эксплуатация колони насосно компрессорных труб — М Недра, 1985

24 Синьцыя В В Пластические смазки в СССР - М Химия, 1984.

25 Трубы нефтяного сортамента Справочник/Под редакцией А Е Сарояна — М Недра, 1987

26 Шевцов В Д Предупреждение газопроявлений и выбросов при бурении глубоких скважин - М Недра, 1988.

СОДЕРЖАНИЕ

1. Выб	бор т	exhol	огиче	ских	регл	амен'	EO1	бур	ени	RI	CKB	аж	НН		•	•	•	•	•
1.1. T	ребов	ания	к ког	нстру	кции	сква	жин	ы											
1.2. B	ыбор	KOHC	рукц	ии ск	важи	ины.		•		•					٠			٠	
1.3. B	ыбор	фоцп	иля с	кваж	ины			٠								٠		•	
1.4. B	ыбор	типа	шарс	шечн	oro z	олота	а.								٠		•		•
2. Haw	_																		
2.1. 0	бщая	часть						٠	• •	,		•	• •	•	,	٠	٠	•	•
2.2. Pa	асчет	проф	иля									٠			٠			•	•
2.3. K	омпон	юзки	при	бурен	ии н	акло	нны	C.	ква	КИІ	Η.	•	•	•	•	•	•	•	•
3. Пор	родора	зруш	ающи	ни й	струм	ент						•			•				
3.1. Д	олота	шар	ошечн	ые															
3.2. Ĥ	Іекото	оые	прич	ины	анома	ально	OTO	изн	ioca	ш	apo	эше	HPS	ых	Д	ол	от	С	0
era BH	SIMU S	ένδκα	ми.																
3.3. K	ORREO	Banna	nan.	ייו אמר	ลกดเท	ечны	י אר	лог	r .										
3.4. To	оциро	n Kur		Me m	peu				•			•				-			
.4. 10 3.5. Д	UNUBK	n Uyt	NUBH	uc Ki			, ,	201	, ,	a .	· ·	, 1116	uut	 30	CP4	'n		ien	-
ю. Д	втоко,	и го	MOBK.	и оур	MAIDH	DIE,	2/1M2	oni	MC 1	a 0	спа	ntc.	*1111	40	CBC	·P			
ыми	компо	зицие	рнным	и ма	гериа	имы	•	•	•	٠		•	•	•	•	•	•	•	•
.6. Pe	ентаб	ельна	я отр	abotk	а ал	мазнь	их д	оло	T	•		٠	•	•	•	٠	٠	٠	•
.7. Д	олота	лопа	стные	€.				•		•		•			٠	٠	•	٠	e
.8. Pa	асшиг	ители	a	. ,				•					•		٠	•	•	٠	
.9. У	лельн	ый м	омент	доло	та .														
	_,																		
I. Заб	ойны	е дви	гателі	инк	ерноп	рием	ные	yer	rpoi	істі	за .	•	•	•	•	•	•	•	•
.1. П	20216	TOLT '	วงกักซ้า	ULIY T	RUTA	телей	_	_											
.2. O	apan.	ra asi	รดชัยน	ופת עו	TRATE	Teŭ		Ť		Ť			_		Ċ		i		
.3. b	CHACII	na sa	JUNEO	IA HDI	T TO:	71 CH	2260	, កដី ២	LIV	17 12 1	ura,	TA7	eŭ	•	•	٠	•	٠	•
.o. D	ыстро	nshai	unbar x	лщиес	и де	lann	5400	JM II	DI A	ды	m a.		CH.	•	•	•	٠	•	•
.4. P	езьоы	в за	ои нь	іх дві	игате	ЛИХ		•	, •	•		•	•	•	٠	•	•	•	•
.5. Б	уры г	eakti	івно-1	урои	нные		• •	•		٠	• •	•	•	. •	•	8	•	•	•
.6. У	строй	ства	керно	прием	иные	рото	рные	3		٠		٠	•	•	•	=	•	•	•
. Syp	ильна	я ко	понна														•		
.l. Tr	руоы	оури.	трные	: веду	mne			٠		٠		•	•	•		*	•	•	•
.2. T	рубы	оури	льные	: утяз	келен	ные	• •	٠	• •	٠	2 0	•	•	• •	•	٠	٠	•	•
.3. Tj	рубы	бури	льные				٠.	•		•		•	•	•	•	•	•	٠	•
.4. P	асчет	коло	нны (Бурил	ьных	TPY	о на	П	POC	ioc:	гь.	٠	•	•	•	•	•	٠	•
.5. O	снасті	ка бу	рилы	юй к	олони	њ.	• •	٠		•		•	•	•	5	•	•	•	•
. Про	мывк	а скв	ажин	ы															
5.1. K		4			n () ! ! ! !	TV 17-1	1 T T T T	AMA	ŭ										_
5.1. K	ласси	фика	INN II	ромы	BOAHE	11 X XX	идко	C1 5	n.	•	٠.,	ċ	nne		*		•	Let	•
.2. M	атери	алы	для	приго	товл	ения,	y T	иж	:/151	inn	n	UU	pat	UI.	n M	11	μU	M C	
кинро	к жид	косте	Й .				• •	٠		•	• •	•	•	•	•	٠	•	•	•
кинго Х. 8.	аракт	ерист	ики ј	earei	TOB					•		•		•	•	•	•	•	•
3 4. K	онцен	траці	ія веі	цеств	B Da	ictbot	ax	pas	лич	HO.	и п	лог	HO	сти	•	•	•	•	•
35 17	OTSUS	Haco	COB																
3.6. M	атери	алы і	a offor	DVROB	ание													•	•
5.7. II	udenn Rugaro	парт	PHNG	B S.H	emer	rax o	бвяз	ки	бу	рил	ьно	Й	KOJ	ЮН	ны				
	o rop n	Mar 17 A	, - es #1#1	** 73,					- 3										
102																			

· · · · · · · · · · · · · · · · · · ·	126
7.2. Расчет обсадных колонн 7.3. Испытания скважин на герметичность	126 144 150 151 153 155 166 167 168
8. Цементирование скважин	169
8.1. Классификация тампонажных цементов	169 171 172 174 175 176 177
9. Инструмент для ликвидации аварий	196
9.1. Метчики и колокола	196 199 205 207 211 214
10. Колонна НКТ	217
10.1. Насосно-компрессорные трубы 10.2. Расчет колонны НКТ 10.3. Оснастка колонн НКТ 10.4. Пакеры, якоря	217 226 230 233
11. Противовыбросовое оборудование	238
11.1. Фланцы, уплотнительные кольца 11.2. Оборудование обсадных колонн. 11.3. Головки колонные 11.4. Катушки фланцевые 11.5. Оборудование противовыбросовое 11.6. Запорная арматура 11.7. Арматура фонтанная и ее элементы 11.8. Ликвидация газонефтеводопроявлений	238 241 243 246 247 252 255 260
12. Спуско-подъемное оборудование и принадлежности	268
12.1, Канаты стальные 12.2. Отработка талевых канатов 12.3. Элеваторы и спайдеры 12.4. Ключи 12.5. Блоки 12.5. Влоки	268 270 271 277 280
13. Резьбы и резьбовые соединения	281
13.1. Профили резьб и размеры резьбовых соединений	281 294
Список литературы	301